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Abstract 

The first chapter of this thesis describes two projects, one explores the novel reactivity of 

quaternary donor acceptor cyclopropanes and the second one involves progress toward 

the total synthesis of the flinderoles A, B, and C. The first project involves the Lewis acid 

catalyzed nucleophilic ring opening of quaternary donor acceptor cyclopropanes with 

indoline. It was found that the ring opening reaction worked well with either Sc(OTf)3 or 

Yb(OTf)3 as the Lewis acids. The ring opened products were also able to be converted 

into pyrroloindoles via a manganese (III) oxidative radical cyclization reaction. 

Cyclopropanes bearing alkynyl, vinyl, and aryl substituents were well tolerated as well as 

indolines bearing substitution at the 3-position. The second project involves the 

application of the ring opening/cyclization reaction to synthesize the pyrroloindole 

scaffold of the flinderoles. The chapter also describes our efforts to complete the 

synthesis of the natural products, and despite many alternative routes, we were not able to 

access the flinderoles. 

The second chapter describes the Lewis acid catalyzed annulation reactions of donor 

acceptor cyclopropanes with vinyl azide and 2H-azirine. Surprisingly, the reaction with 

either the vinyl azide or 2H-azirine gave the same azabicyclic product. The reaction was 

also limited to cyclopropanes bearing trifluoroethyl esters instead of the common methyl 

esters. The reaction scope with respect to the cyclopropanes tolerated aryl, heteroaryl, 

vinyl, alkynyl and quaternary substituents on the cyclopropane. In both reactions, the 

azabicycle was obtained as a single diastereomer, which was confirmed by x-ray 

crystallography. 

Keywords: donor acceptor cyclopropanes, nucleophilic ring opening, quaternary 

cyclopropanes, pyrroloindoles, flinderoles, trifluoroethyl esters, azabicycles, annulation 

reaction, total synthesis, phosphine gas, organophosphines. 
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Chapter 1: Synthesis of Pyrroloindoles from Donor Acceptor 

Cyclopropanes and their application towards the Total 

Synthesis of Flinderoles A, B, and C 

1 Chapter Introduction 

Chapter one explores the new reactivity of donor acceptor (DA) cyclopropanes with a 

quaternary donor center. The chapter is divided into two projects: 1) the synthesis of 

pyrroloindoles from the nucleophilic ring opening of quaternary DA cyclopropanes with 

indoline followed by a Mn(OAc)3 mediated oxidative radical cyclization, and 2) the 

progress towards the total synthesis of Flinderoles A, B, and C. The work towards the 

synthesis of pyrroloindoles from quaternary DA cyclopropanes and the progress towards 

the total synthesis of the Flinderoles A, B, and C was worked independently. The results 

in Section 1.5.1, Section 1.5.2, and Section 1.5.2.1 have been published in a peer review 

journal and reproduced in part with permission from Curiel Tejeda, J.E.; Landschoot, 

B.K.; Kerr, M.A. Org. Lett. 2016, 18, 2142-2145. Copyright © 2016 American Chemical 

Society. 

1.1 Structure and Reactivity Donor Acceptor Cyclopropanes 

One of the goals of an organic chemist is to develop new reactive molecules for the 

construction of complex compounds. In this light, donor acceptor (DA) cyclopropanes 

have emerged as useful synthetic blocks that have allowed organic chemists to 

accomplish their goal of synthesizing complex scaffolds. The reactivity of DA 

cyclopropanes has been widely used in the development of novel methodologies, and in 

the total synthesis of natural and unnatural compounds.1 Cyclopropanes are simply three-

membered carbocycles characterized by their inherent angle strain, and intrinsic torsional 

strain.2 Cyclopropanes have a significantly high strain energy of 115 kcal/mol, since they 

have 60° bond angles which deviates considerably from the ideal 109.5° for sp3- 

hybridized orbitals. Due to the high ring strain, cyclopropanes react similarly to olefins 
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rather than cycloalkane. The reactivity of cyclopropanes can be further enhanced by 

incorporating activating groups which induce bond polarization.1,2  

Bond polarization of a C-C bond in the cyclopropane ring can be accomplished through 

the attachment of an electron donating group (EDG), also known as donor groups (D), 

(ex: methoxy, methyl, aryl, etc.) or the attachment of an electron withdrawing groups 

(EWG), also known as acceptor groups (A), (ex: CO2R, CN, C(O)R, SO2R, etc.).1b When 

D and A  groups are vicinally positioned on the cyclopropane, herein described as donor 

acceptor (DA) cyclopropanes, they act in a push-pull fashion, which results in an 

enhanced polarization of the  corresponding C-C bond (1-2, Figure 1-1). The enhanced 

bond polarization facilitates the ring opening reactions of DA cyclopropanes 1-1 with 

various nucleophiles.1b The charge separation in DA cyclopropanes can be further 

enhanced in the presence of a Lewis acid, heat, or pressure, allowing the DA 

cyclopropane to undergo nucleophilic ring opening to give a homo-Michael addition 

product 1-3. The next section focuses on a few literature examples showcasing this type 

of transformation. The examples covered in the literature review only focus on the use of 

DA cyclopropanes with di-carboxylate acceptor groups and their equivalents. 

 

Figure 1-1. Reactivity of DA cyclopropane with a nucleophile. 

 

1.2 Ring Opening of Donor Acceptor Cyclopropanes 

One of the earliest examples of nucleophilic ring opening reactions of cyclopropanes 

comes from the work of Bone and Perkin in 1895, where homo-Michael addition of a 

malonate nucleophile to a cyclopropane carboxylate was studied.3 The field of 

cyclopropane studies had a resurgence in the 1960s and 1970s with the work of Stork4 

and Danishefsky5, which only focused on the use of acceptor substituted cyclopropanes. 
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It was not until the late 1970s and 1980s that the synthetic utility of DA cyclopropanes 

was demonstrated, in what is considered the modern age of DA cyclopropanes, in the 

work done by Wenkert6 and Reissing7.  

 Ring Opening of Donor Acceptor Cyclopropanes with Indoles 

In 1997, Harrington and Kerr showed the hyperbaric (13 kbar) homo-Michael addition of 

indole 1-4 onto DA cyclopropane 1-5, catalytic Yb(OTf)3 (5 mol%), to give alkylated 

indole 1-6 in a 27-97% yield (Scheme 1-1).8 The reaction was versatile in the substitution 

for both the cyclopropane (R = H, Ph, Me), and N-protected indole. When R1 = TIPS, the 

reaction was somewhat problematic in that the addition reaction proceeded with partial 

desilylation, while with R1 = H, the yield of the product was drastically lowered, due to 

the formation of product 1-7. 

N
R1

R2
R3

+
CO2Et

CO2Et

R

Yb(OTf) 3 (5 mol%)

MeCN, 13 kbar N
R1

R2
R3

EtO2C CO2Et

R

27-97%

1-4 1-5 1-6

N
H

CO2Et

CO2Et
+

1-7  

Scheme 1-1. Harrington and Kerr’s ring opening of DA cyclopropanes with indoles. 

In 2011, Kerr and co-workers found that cyclopropane hemimalonate 1-9 (geminally di-

substituted with one carboxyl ester and one carboxylic acid) could undergo nucleophilic 

ring opening with indole 1-8 at hyperbaric (13 kbar) conditions and catalyst free 

conditions (Scheme 1-2).9 The mode of reactivity of cyclopropane hemimalonate 1-9 was 

postulated to be a result of the carboxylic acid moiety forming a favourable hydrogen 

bond 1-10 intermediate.                                                                                                                                              



www.manaraa.com

 

4 

 

 

Scheme 1-2. Kerr group ring opening of cyclopropane hemimalonate with indole. 

The hydrogen bond stereoelectronically aligns the two carbonyl groups to receive 

electron density in the ring opening event, since the resulting zwitterion would be a 

highly delocalized six-electron species. It is notable to mention that the reaction scope 

tolerated R = aryl, naphthyl, and heteroaryl substitution on the cyclopropane, but not R = 

H, isopropyl, and alkenyl substituents. For the indoles, N-substituted R1 = H, Me, and Bn 

were well tolerated to give product 1-11 in good yields (68-81%). 

An enantioconvergent homo-Michael addition of indoles with DA cyclopropanes was 

presented by the Johnson group in 2013.10 The reaction proceeded via a dynamic kinetic 

asymmetric transformation (DyKAT) with a pybox•MgI2 catalyst system (Scheme 1-3). 

Steinreiber and co-workers define DyKAT as “the de-symmetrization of racemic or 

diastereomeric mixtures involving interconverting diastereomeric intermediates”.11 

Johnson and co-workers showed that the pybox (1-15)•MgI2 catalyst selectively activates 

the (S)-cyclopropane to give the homo-Michael addition product 1-14 with good 

enantiomeric ratio (er), up to 93:7. The reaction scope was favourable towards 

electronically diverse indoles bearing a N-TBS protecting group and, in general, the 

yields were good (68-96%), except for electron deficient indoles bearing halogen or ester 

substituents (38-40% yield).   
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N
TBS

+ CO2Me
CO2Me

R

MgI2 (10 mol%)

CCl4, 4 Å MS, RT N
TBS

MeO2C CO2Me

R

38-96%
up to 97:3 er

R1 N

Br

O

N N

O

tBu
tBu

pybox

pybox (12 mol%)
R1

(racemic)

1-12 1-13 1-14 1-15  

Scheme 1-3. Johnson group asymmetric synthesis of indole homo-Michael adducts via 

Dynamic Kinetic Friedel-Crafts alkylation with DA cyclopropanes. 

In 2016, Singh and co-workers presented a one-pot formation of 2,3-disubstituted indole 

1-18 from aniline 1-16 and cyclopropane 1-17 (Scheme 1-4).12 A highlight of the reaction 

is the use of catalytic AgSbF6 which triggers the ring opening of DA cyclopropane 1-17 

by aniline 1-16 preceded by the cyclization reaction upon alkyne activation to give 1-18 

in a 41-98% yield.  

EWG

EWG

R3

+R1

Ar

N
H

R2

AgSbF6 (10 mol%)

DCE, 60 °°°°C
41-98%

N
R2

EWG

R3

R1

EWG

Ar

EWG = CO2Me, CN, COPh

1-16 1-17 1-18

 

Scheme 1-4. Singh group AgSbF6 catalyzed indolization/C3-functionalization cascade of 

2-ethynylanilines via ring opening of DA cyclopropanes. 

 Ring Opening of Donor Acceptor Cyclopropanes with 
Heteroatom Nucleophiles 

Another type of nucleophilic partner for the ring opening of DA cyclopropanes involve 

the use of heteroatoms. Heteroatom nucleophiles offer easy access to a variety of homo-

Michael addition products and heterocycles. One of the first examples of nucleophilic 

ring opening reactions of DA cyclopropanes with amine nucleophiles was done in 1986 

by Blanchard and Schneider (Scheme 1-5).13 Pyrrolidine 1-19 was shown to open DA 
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cyclopropane 1-20 in the presence of catalytic Et2AlCl to yield a variety N-alkylated 

pyrrolidine 1-21 in yields ranging from 30-91%.   

 

Scheme 1-5. Blanchard and Schneider’s ring opening of DA cyclopropanes with 

pyrrolidine. 

In 2008, Charette and co-workers developed a protocol for the Lewis acid catalyzed ring 

opening of enantiopure methyl 1-nitrocyclopropanecarboxylate 1-22 with amine 1-23 to 

give homo-Michael addition product 1-24 (Scheme 1-6).14 Preliminary studies showed 

that AlCl3, SnCl4, and BF3•OEt2 Lewis acids generated the ring opening product as well 

as a mixture of unidentified products. Weakly activating Lewis acids such as Cu(OTf)2, 

ZnCl2, and Ti(OiPr)4 gave products in high enantiomeric excess (ee) but in low yields. 

Optimal results were obtained with NiClO4•6H2O, which gave 1-24 in good yields (66-

94%) and high ee (90-92%).  

CO2Me

NO2

R
+
R1

H
N

R2 CH2Cl2, RT

N

R

R2 R1
CO2Me

NO2

Ni(ClO4)2 6H2O

(10 mol%)

63-94%
ee = 90-92%

1-22 1-23 1-24  

Scheme 1-6 Charette and co-workers’ ring opening of DA cyclopropanes with amines. 

Furthermore, Tang and co-workers published an asymmetric version of Charette’s work 

by employing Ni-catalyzed asymmetric ring opening reaction of racemic DA 

cyclopropane 1-26 with aliphatic amine 1-25 using the chiral indane-trisoxazoline (In-

TOX) ligand 1-28 (Scheme 1-7).15 The reaction performed well with a series of substrates 

which gave a variety of chiral γ-substituted γ-amino acid derivatives 1-27 in yields up to 

99%, and enantioselectivity up to 98% ee.  
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HN

R3

R2
+

CO2CH2
tBu

CO2CH2
tBu

R1

Ni(ClO4)2 6H2O

(10 mol%)

1-28 (12 mol%)

CO2CH2
tBu

CO2CH2
tBu

R1N
R3

R2

O

N N

O

N

O

In-TOX

71-99%
ee = 87-98%

1-25 1-26 1-27 1-28  

Scheme 1-7. Tang and co-workers’ Ni/(In-TOX) catalyzed asymmetric ring opening of 

DA cyclopropanes with amines. 

Tang and co-workers also showed the first catalytic enantioselective ring opening of DA 

cyclopropane 1-29 with water (Scheme 1-8).16 Cy-TOX/Cu(ClO4)2·6H2
18O was 

employed, where the copper hydrate acted both as the Lewis acid and nucleophile. The 

reaction performed very well over a broad range of substituted cyclopropanes including 

aryl, furyl, indolyl, and cinnamyl, leading to γ-hydroxybutyric acid (GHB) derivatives 1-

30 in 70-96% yields with up to 96% ee.  

 

Scheme 1-8. Tang and co-workers’ enantioselective ring opening of DA cyclopropanes 

with water. 

Lastly, an efficient regioselective ring opening cyclization of cyclohexane-1,3-dione-2-

spirocyclopropanes 1-32 with primary amines was developed by Yakura and co-workers 

(Scheme 1-9).17 The reaction proceeded at room temperature without any Lewis acid or 

additives to provide tetrahydroindol-4-ones 1-33 in yields ranging from 86-97%, which 

were further converted to highly substituted indoles 1-34 in yields up to 87%.  
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R1
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Scheme 1-9. Yakura and co-workers’ ring opening of spirocyclopropane with primary 

amines. 

Yakura and co-workers proposed two plausible routes for the formation of 1-33 (Scheme 

1-10). In route a, nucleophilic ring opening of spirocyclopropane 1-32 at the more 

electrophilic substituted carbon on the cyclopropane, leads to γ-amino ketone A, 

regioselectivity. Nucleophilic attack of the amine to the carbonyl carbon followed by 

dehydration of hemiaminal B gives indoline 1-33. An alternative route, route b, involving 

imine formation and a cyclopropylamine rearrangement (C), was also proposed by 

Yakura and co-workers. The synthesis of substituted indoline is significant in the field of 

organic synthesis, as they are often the precursors in the synthesis of biologically active 

indole alkaloids. 

O

O
R

R3NH2

R1

O

R1

R2

NHR3

R

O

N

O

R

R3
R1
R2

OH

-H2O

N

O

R

R3
R1
R2

route a

route b
-H2O R3NH2

O

N

R

R1
R2

R3

1-33

A

BC

1-32

R2

 

Scheme 1-10. Yakura and co-workers proposed mechanism for the formation of indoline. 

 Ring Opening of Donor Acceptor Cyclopropanes with 
Indoline  

Another direct method to synthesize functionalized indolines was published by Magolan 

and Kerr in 2006 where DA cyclopropanes were opened with indoline.18 Commercially 
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available 1,1-carbomethoxycyclopropane 1-36a or dimethyl 2-phenylcyclopropane-1,1-

dicarboxylate (1-36b) reacted with indoline 1-35, under Lewis acidic conditions, to give 

N-alkylindolines 1-36a or 1-36b in 80% and 74% yield respectively (Scheme 1-11).  

 

Scheme 1-11. Magolan and Kerr's ring opening of DA cyclopropanes with indoline. 

After a six-year hiatus, the scope for the nucleophilic ring opening reaction of DA 

cyclopropanes with indoline was studied, employing the same conditions as above to 

produce N-alkylindolines (1-37a-i) (Figure 1-2).19  
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1-37g: 72% 1-37h: 24% 1-37i: 72%

1-37a-i

 

Figure 1-2.  Reaction scope for the nucleophilic ring opening of DA cyclopropanes with 

indoline. 

The reactivity of the cyclopropanes toward nucleophilic ring opening is, to a large 

degree, influenced by the ability of the donor groups to stabilize the developing positive 

charge during the ring opening event which is reflected in the variation of the reaction 

times as well as the yields. Good yields (63-80%) were obtained with cyclopropanes 

bearing aryl, heteroaryl, and vinyl substituents, but not for the isopropyl substituted 

cyclopropane 1-36h, which required 24 hours to reach completion and only gave 1-37h in 

24% yield (Figure 1-2). It was postulated that the steric effect of the isopropyl moiety 

interfered with indoline during the ring opening event, since unreacted cyclopropane was 

recovered and thus explaining why 1-37h was obtained in such a low yield.   

 Mn(OAc)3 Mediated Radical Cyclizations of N-alkylidolines 

In addition to the ring opening of DA cyclopropanes with indoline, in 2006, Magolan and 

Kerr showed the conversion of N-alkylindolines 1-37a and 1-37b into pyrroloindoles 1-
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38a and 1-38b via a Mn(OAc)3 mediated oxidative radical cyclization reaction (Scheme 

1-12).18   

 

Scheme 1-12. Initial examples of the Mn(OAc)3 mediated oxidative radical cyclization of 

N-alkylindolines. 

The Mn(OAc)3 mediated radical cyclization mechanism is shown below in Figure 

1-3.18,20 The reaction begins with the oxidation of N-alkylindoline 1-37a to indole 1-39, 

followed by the oxidation of a malonic enolate to give malonic radical 1-40. Cyclization 

at the two-position of the indole gives benzylic radical 1-41, which can then undergo 

further oxidation to form carbenium ion 1-42. Aromatization by loss of a proton gave 

pyrroloindole 1-38a.  

N
CO2Me

CO2Me

N
CO2Me

CO2Me N
CO2Me

CO2Me

N
CO2Me

CO2Me

N
CO2Me

CO2Me

N
CO2Me

CO2Me
-H+

M
n(
O
Ac
) 3

3

M
n(
O
A
c) 31-37a

1-39 1-40

1-41

1-421-38a  

Figure 1-3. Reaction mechanism for the Mn(OAc)3 mediated oxidative radical 

cyclization. 
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In addition to Magolan and Kerr’s work in 2006, N-alkylindolines 1-37a-i were conveted 

to pyrroloindoles 1-38a-i in good yields (61-92%) by treating them with five equivalents 

of Mn(OAc)3 in methanol a heated to 70 oC (Figure 1-4).19  

N
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MeOH, 70 °°°°C
1 - 3 h

1-38a: 82% 1-38b: 86% 1-38c: 84%

1-38d: 63% 1-38e: 61% 1-38f: 75%

1-38g: 91% 1-38h: 60% 1-38i: 92%

N
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CO2Me

CO2Me
CO2Me

CO2Me

R2

N

CO2Me

CO2Me
N

CO2Me

CO2Me

Ph

N

CO2Me

CO2Me

p-BrPh

N

CO2Me

CO2Me

p-ClPh

N

CO2Me

CO2Me

2-naphth

N

CO2Me

CO2Me

2-furyl

N

CO2Me

CO2Me
N

CO2Me

CO2Me
N

CO2Me

CO2Me

Ph

NPhth

1-37a-i 1-38a-i

 

Figure 1-4. Reaction Scope for the Mn(OAc)3 mediated oxidative radical cyclization of 

N-alkylindolines 1-38a-i. 

 Ring Opening of Donor Acceptor Cyclopropanes at 

Quaternary Donor Sites 

Despite the many examples published over the years in the field of nucleophilic ring 

opening reactions of DA cyclopropanes, the methodologies have predominantly used 

cyclopropanes with one donating group. The ring opening of cyclopropanes bearing a 

quaternary donor site vicinal to the diester moiety - also known as quaternary DA 

cyclopropane - have not been fully explored, and only a few examples exist in the 

literature. Schneider13 and Kotsuki21 opened DA cyclopropanes at the quaternary donor 
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site, with pyrrolidine 1-43 and 1H-pyrazole 1-46, respectively, to give ring open products 

1-45 and 1-48 in 34 % and 83% yield (Scheme 1-13). 

 

Scheme 1-13. Schneider (1) and Kotsuki (2) examples of ring opening of quaternary DA 

cyclopropanes. 

Recently in 2014, Ivanov and co-workers showed that cyclopropane 1-49 bearing 

quaternary donor site could undergo ring opening with sodium azide in the presence of 

Et3N•HCl in DMF heated to 135 °C (Scheme 1-14).22 Due to the elevated reaction 

temperature, the nucleophilic ring opening reaction was accompanied by a 

dealkoxycarbonylation, leading to the formation of azidobutyrate 1-50 in a 48% yield. 

The reaction also formed benzophenone 1-51 as a side product, via the generation of 

nitrene, and subsequent rearrangement of the ring open product 1-50.  

 

Scheme 1-14. Ivanov and co-workers’ ring opening of quaternary DA cyclopropanes 

with sodium azide. 

1.3 Project Goal 

Given the limited protocols on the nucleophilic ring opening of DA cyclopropanes at 

quaternary donor sites, we envisioned a simple extension of Magolan and Kerr’s protocol 

by reacting quaternary DA cyclopropane 1-52 with indoline 1-35 (Scheme 1-15). The 

result of this reaction would give N-alkylindoline 1-53 that subsequently can be treated 
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with Mn(OAc)3 to give pyrroloindole 1-54. The methodology could then be used to 

access pyrroloindole containing natural products such as the flinderole A (1-55), B (1-

56), and C (1-57). The quaternary stereocenter (carbon with asterisk) of the flinderoles 

pyrroloindole moiety would be derived from the quaternary cyclopropane.  

 

Scheme 1-15. Envisioned application of ring opening/radical cyclization protocol for the 

synthesis of flinderoles A, B, and C. 

1.4 Introduction to the Flinderoles A, B, and C 

The flinderoles A-C23 (Scheme 1-15) are a group of bis-indole alkaloids isolated in 2009 

from the Flindersia plant species in Australia and New Papua Guinea. The flinderoles 

have been shown to exert impressive antimalarial activity against the parasite P. 

falciparum. Since the commonly used treatment of the P. falciparum infection, which 

causes the most severe malaria infection, have been affected by the presence of 

multidrug-resistant parasites, the new molecular scaffold of the flinderoles makes them 

an attractive synthetic target for antimalarial drug discovery. To date, there have been 

three reported total syntheses of the flinderoles.  
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 Dethe’s Biomimetic Total Synthesis of Flinderole B and C 

The first total synthesis of flinderole B and C was done by Dethe and co-workers in 

2011.24 The synthesis showcased a simple and efficient biomimetic approach in which 

pyrrole[1,2-a] indoles 1-60 and 1-61 were synthesized using a highly stereo- and 

regioselective [3+2] reaction cascade (Scheme 1-16).  

The synthesis begins with the Wittig olefination of aldehyde 1-58 to generate the 

unsaturated ester, which upon treatment with methyl magnesium iodide gave tertiary 

alcohol 1-59 in an 81% overall yield (Scheme 1-16). Indole 1-59 could then be used to 

form the two intermediate indole moieties for the skeleton of flinderole B and C. The first 

intermediate was made by dehydration of the hydroxyl group of indole 1-59, via 

mesylation followed by elimination, to give olefin 1-61 in an 81% yield. The use of 

sodium amalgam to deprotect the phenyl sulphonyl group of 1-59 gave the other coupling 

partner, alcohol 1-60 in a 91% yield. With 1-60 and 1-61 formed, the stage was set for the 

key [3+2] reaction. Treatment of 1-60 and 1-61 with an excess of BF3•OEt2 promoted the 

[3+2] cycloaddition reaction and subsequent deprotection of the tert-butyldimethylsilyl 

(TBS) group gave diol 1-62 in a 78% yield, and good diastereoselectivity (4:1). 

Oxidation of 1-62 using IBX, followed by a reductive amination of the resulting 

bisaldehyde, and deprotection of the tryptamine nitrogens gave flinderole B (1-56) as the 

major product in a 47% yield, and flinderole C (1-57) as the minor product in 11% yield, 

over the last three steps. Overall, Dethe and co-workers’ synthesis proceeded in an 

overall 17% combined yield, which involves 11 steps in the longest linear sequence. 
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Scheme 1-16. Dethe and co-workers’ synthesis of flinderole B and C. 

 Toste’s Total Synthesis of Flinderoles B and C 

The second synthesis of the flinderoles B and C was reported by Toste and co-workers in 

2011.25 Toste’s approach to flinderoles B and C involved the synthesis of two important 

fragments: indole 1-70 (Scheme 1-17) and indole 1-74 (Scheme 1-18). The two indole 

fragments would then be united by a Horner-Wadsworth-Emmons (HWE) olefination to 

obtain the bis-indole framework of the natural products.  
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Scheme 1-17. Synthesis of Toste and co-workers pyrroloindole fragment 1-70. 

To begin the synthesis of indole 1-70, Toste and co-workers protected commercially 

available tryptophol (1-63) as the tert-butyldiphenylsilyl (TBDPS) ether, followed by N-

alkylation with methyl bromoacetate to give indole 1-64 in a 45% (2 steps), which was 

then converted to amino alcohol 1-66 in a 73% yield (Scheme 1-17). Alkylation of N-

methyl-N-ethanolamide 1-66 using lithium diisopropylamide (LDA) and LiCl followed 

by deprotection with sodium methoxide and an excess of dimethyl carbonate (to remove 

the amide auxiliary) gave allene 1-67 in an 89% yield, over two steps. Allene 1-67 was 

then subjected to the key gold(I)-catalyzed hydroarylation by reacting it with 5 mol% of 

IPrAuCl and 5 mol% AgSF6 to afford pyrroloindole 1-68 in an 88% yield. Methylation of 

indole 1-68 gave pyrroloindole 1-69 in a 94% yield and a 2:1 dr. DIBAL-H reduction of 

the methyl ester on 1-69, and subsequent Parikh-Doering oxidation yielded aldehyde 1-70 

in a 68% yield over two steps, thus completing the synthesis of the first indole fragment. 

The second fragment (1-74, Scheme 1-18) was synthesized by treating TBS-protected 

pentyn-4-ol 1-71 with phenylhydrazine and an excess of ZnCl2 to give the desired TBS-

protected-2-methyltryptophol 1-72 in a 76% yield. N-Protection with phenylsulfonyl 

chloride and potassium hydroxide gave indole 1-73 in a 68% yield.  A radical 

bromination/Arbuzov sequence was then performed to afford phosphonate 1-74 in a 77% 

yield, thus completing the synthesis of the second indole fragment. 
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Scheme 1-18. Toste’s synthesis of indole fragment 1-74. 

A HWE olefination between 1-70 and 1-74 provided the bis-indole skeleton for the 

flinderoles (Scheme 1-19). Olefin 1-75a was obtained in a 36% yield and its 3'-epimer 1-

75b in a 33% yield. From this point on, both bis-indole skeletons were carried forward 

separately towards flinderoles B and C; thus, tetrabutylammonium fluoride (TBAF) 

deprotection of the silyl ethers gave compounds 1-76a and 1-76b in 79% and 74% yield, 

respectively. To finish their synthesis, Toste and co-workers followed Dethe’s final 

sequence to obtain the flinderoles (Scheme 1-16).24 Flinderole B, 1-56, was obtained in a 

62% yield and flinderole C, 1-57, in a 66% yield over three steps. Flinderoles B and C 

were successfully synthesized in an overall 4% combined yield from the commercially 

available tryptophol 1-63 in 18 steps (14 steps longest linear sequence).  
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Scheme 1-19. Toste's final steps towards the flinderoles B and C. 

 Vallakati and May’s Biomimetic Synthesis of Flinderoles A, 
B, and C 

The most recent synthesis of flinderole A, B, and C, was presented by Vallakati and May 

in 2014.26 Vallakati and May’s synthesis was also a biomimetic synthesis of the 

flinderoles, which in comparison with Dethe and co-workers biomimetic synthesis,24 

Vallakati and May synthesized flinderoles A, B, and C, while Dethe only synthesized 

flinderoles B and C. The key step of Vallakati and May’s procedure is an acid-promoted 

dimerization of the natural product borrerine (1-81, Scheme 1-20). Borrerine (1-81) was 

synthesized via a Pictet-Spengler reaction between tryptamine 1-77 and aldehyde 1-78 in 

the presence of methyl chloroformate (1-79)27 to give indole 1-80 in an 87% yield. 

Treatment of 1-80 with lithium aluminium hydride reduced the N-methyl ester to afford 

Borrerine in an 86% yield. Reacting of borrerine (1-81) with MeOTf in chloroform, 

followed by trifluoroacetic acid afforded flinderole B (1-56) and C (1-57) in 21% and 

19% yield, respectively. Treatment of borrerine with acetic acid (AcOH), afforded 

flinderole A (1-55) in 38% yield.  
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Scheme 1-20. Vallakati and May's biomimetic total synthesis towards the flinderoles A, 

B, and C. 

1.5 Results and Discussion 

 Methodology 

Before tackling the flinderoles, the nucleophilic ring opening reaction of quaternary DA 

cyclopropanes with indolines had to be investigated. We commenced this stage of the 

project by synthesizing a library of DA cyclopropane containing quaternary donor sites. 

Aside from cyclopropanes 1-52d and 1-52e, which have been prepared previously, 

cyclopropanes 1-52a-c are novel. All the cyclopropanes were obtained via a Rh2(esp)2 

catalyzed cyclopropanation between the corresponding alkene 1-83 and diazomalonate 1-

82 (Figure 1-5). Cyclopropanes 1-52a and 1-52d were obtained in lower yields due to the 

formation of undesired isomers, by-products, and decomposition of starting material. 

Cyclopropane 1-52d was obtained in a 9:1 inseparable mixture with its regioisomer in a 

52% yield. The mixture of isomers was to be used as is with the hope of separating each 

isomer at a later stage in the methodology. 
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Figure 1-5. Rhodium catalyzed synthesis of quaternary DA cyclopropanes 1-52a-e. 

After synthesizing a library of quaternary DA cyclopropanes, the next step was to 

optimize the nucleophilic ring opening of quaternary DA cyclopropanes with indoline. 

Initially, when the reaction was performed using DCE as the solvent (entries 1 and 2, 

Table 1-1), the desired product was not obtained, and instead, the DCE reacted with 

indoline 1-35a to give N-alkylindoline 1-84. Exchanging the solvent to toluene (entry 3) 

gave the desired N-alkylindoline 1-53c in a 60% yield; however, some decomposition of 

starting materials was obtained resulting in the low yield. Lowering the reaction 

temperature to 100 oC and shortening the reaction time from 3 to 1.5. hours (entry 4) 

resulted in higher yields with little to no decomposition of starting material. 
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Table 1-1. Optimization conditions for the nucleophilic ring opening of quaternary DA 

cyclopropanes with indoline. 

   

It was later found that Yb(OTf)3 (entry 5, Table 1-1) was a better promoter for the 

reaction, as less catalyst was required to give product 1-53c with the same reaction time 

and yield as entry 4. The scope of the ring opening reaction was studied employing 

conditions in entries 4 and 5. 

Results for the ring opening reactions of DA cyclopropanes 1-52a-e (Figure 1-5) with 

indolines 1-35a, 1-35c - 1-35d are summarized in Figure 1-6. Cyclopropanes bearing 

acetylenic substituents, 1-52a-c, reacted smoothly with either Sc(OTf)3 and Yb(OTf)3 to 

give N-alkylindolines 1-53a-c in good yields (72-88%). N-Alkylindoline 1-53a was 

obtained is higher yields when the reaction was performed with Sc(OTf)3, 88% yield, 

versus a 77% yield with Yb(OTf)3; this is the only example were the ring opening 
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reaction catalyzed by Sc(OTf)3 gave superior results to Yb(OTf)3. The lower yields 

observed for N-alkylindoline 1-53d (44-50% yield) are most likely a result of the vinyl 

cyclopropane 1-52d undergoing competitive polymerization. Indolines bearing a side 

chain, 1-35c and 1-35d, also performed well in this reaction yielding a 1:1 mixture of 

diastereomers. Since the indolines were to be oxidized to indoles in the next step, the 

mixture of diastereomers was inconsequential.  

 

 

Figure 1-6. Reaction scope for the nucleophilic ring opening of quaternary DA 

cyclopropanes with indoline. 
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The N-alkylindolines 1-53a-g were then subjected to the Mn(OAc)3 mediated oxidative 

radical cyclization to synthesize the corresponding 1,2-pyrroloindoles (Figure 1-7). 

Initally, the Mn(OAc)3 mediated radical cyclization of N-alkylindolines with acetylenic 

was worrisome to us given that the malonic radical may react in some way with the 

pendant alkynyl moiety.28 However, this was found to not be the case as pyrroloindoles 

1-54a-c were obtained in yields ranging from 61-65%. 

 

Figure 1-7. Reaction scope for the Mn(OAc)3 mediated oxidative radical cyclization of 

N-alkylindolines 1-53a-g. 

The vinyl substituted pyrroloindole 1-54d was obtained in a low 40% yield, perhaps due 

to competing polymerization or side reactions upon treatment with Mn(OAc)3. It was 

interesting to see the difference in yields obtained for pyrroloindoles having substituents 

at the three-position of the indole 1-54f and 1-54g, 80% versus 63% yield. It is postulated 

that during the ring closure process, the formation of the allylic cation (1-59, Figure 1-3) 
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is less favoured from the electron withdrawing effects of the CN group, resulting in lower 

yields. Results of both the nucleophilic ring opening of DA cyclopropanes at quaternary 

donor centers with indoline and the Mn(OAc)3 mediated oxidative radical cyclization of 

the resulting N-alkylindolines to give pyrroloindoles, shows paralleled yields to their less 

substituted counterparts in Figure 1-2 and Figure 1-4. 

 Progress towards the Total Synthesis of the Flinderoles 

With the success of our methodology presented in Section 1.5.1, the next step was to 

apply it in the synthesis of the flinderoles. Retrosynthetically (Scheme 1-21) we 

envisioned that flinderole B or C - the synthesis will be done using racemic starting 

materials - can originate from a Wittig reaction with aldehyde 1-88, followed by 

functional group manipulation to afford the N-dimethyltryptamine (DMT) side chains.  
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Scheme 1-21. Retrosynthetic plan towards the synthesis of flinderole B or C. 

Aldehyde 1-88 could arise from a Krapcho decarboxylation followed by reduction of the 

esters in compound 1-87 (Scheme 1-21). Intermediate 1-87 would be made by the cross-

coupling reaction between a 2-bromoindole derivative 1-86 and pyrroloindole 1-85, the 

later derived from a hydrostannylation reaction of 1-54a. Pyrroloindole 1-53a can be 

synthesized in two steps by employing our nucleophilic ring opening of DA cyclopropane 

1-52a with indoline 1-35, followed by an oxidative cyclization with Mn(OAc)3.  
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 Synthesis of bis-Indole Framework  

We commenced our synthesis with a model study to build the bis-indole framework of 

the flinderoles skeleton (Scheme 1-22). To this end, the alkynyl moiety of 1-54f was 

hydrostannylated to yield vinylstannane 1-89 in an 85% yield. Compound 1-89 was then 

subjected to Stille coupling conditions with N-tosylated 2-bromoindole 1-90 to yield bis-

indole 1-91 in an 85% yield. 

PdCl2(PPh3)2 (5 mol%)
HSnBu3 N

Me

CO2Me

CO2Me

Bu3Sn

N

Me

CO2Me
CO2Me

THF, 0 °°°°C to RT
0.5 h, 85%

N
Ts

Br

toluene, 110 °°°°C
24 h, 58%

N

Me

CO2Me

CO2Me

NTs

Pd(PPh3)4 (5 mol%)

OTBSOTBS OTBS

1-54f 1-89 1-91

1-90

 

Scheme 1-22. Synthesis of the bis-indole flinderole skeleton 1-91. 

During the Stille coupling reaction, it was noticed that higher yields were obtained with a 

prolonged reaction time, as well as higher solvent temperatures 110℃; however, the 

highest yield obtained was 58%. With the skeletal structure of the flinderoles secured in 

four steps, we then set our sights on developing the isobutylene side chain. 

 Attempts to Synthesis Isobutylene Side Chain of the 
Flinderoles 

Moving forward again with another model study, we wanted to see if our proposed 

reduction/Wittig olefination would allow access to the isobutylene side chain of the 

flinderoles. Starting with a Krapcho decarboxylation of 1-54e gave mono-ester 1-92 in 

74% yield and a dr 1:1.3 (Scheme 1-23). DIBAL-H reduction of ester 1-92 yielded 

aldehyde 1-93 in 87% yield with minimal loss in dr (1:1.1). We soon found that aldehyde 

1-93 was highly unstable to purification by flash column chromatography, and thus, it 

was used immediately in the next reaction as a crude mixture.  
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Scheme 1-23. Synthesis of 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1-

carbaldehyde 1-93. 

Attempts for the Wittig olefination of 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1-carbaldehyde (1-93) to access isobutylene side chain are shown in Table 1-2. 

Initially, t-BuOK was used as the base (entries 1 and 2); however, there were no signs of 

ylide formation in either tetrahydrofuran or diethyl ether and so a new base was used.  

Table 1-2. Wittig olefination attempts towards compound 3-methyl-1-(2-methylprop-1-

en-1-yl)-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (1-95). 

 

Changing the base to n-BuLi (entry 3 and 4, Table 1-2) to promote the olefination was a 

minor success as the product was formed, but in an undesirable 6-7% yield. In both cases 
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it appeared (by 1H NMR and HRMS) that deformylated 1-96 was being produced as a 

major by-product. It should be noted that 1-96 is only postulated as it was not fully 

characterized, but will be discussed in more detail below. Attempts to minimize by-

product formation, by cooling the reaction, only resulted in a lower yield of the desired 3-

methyl-1-(2-methylprop-1-en-1-yl)-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole (1-92) 

(Table 1-2). 

1.5.2.2.1 Investigating the Stability of 3-methyl-3-phenyl-2,3-
dihydro-1H-pyrrolo[1,2-a]indole-1-carbaldehyde  (1-93) 

Since a by-product was being formed during the Wittig olefination, we wanted to test the 

stability of 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1-carbaldehyde (1-

93) (Scheme 1-23). When a small sample of aldehyde 1-93 was dissolved in an NMR 

tube with CDCl3, and stirred for 8 h at room temperature, the crude 1H NMR showed that 

the aldehyde signal was completely gone, and the resulting 1H NMR suggested that 1-96 

(Table 1-2) was being formed. Attempts to characterize compound 1-96 using COSY, 

HSQC, and HMBC was troublesome as the data was not very clear. Efforts to further 

characterize the compound by x-ray crystallography was not successful suitable, since 

crystal was not obtained. Although additional evidence for the structural elucidation of 

the by-product 1-96 is required, we are basing the formation of 1-96 based on 1H NMR, 
13C NMR, and HRMS. Compound 1-96 is believed to be formed by an oxidative 

deformylation of aldehyde 1-93. Similar aldehydes were also shown to undergo this 

transformation in the presence of O2.29 Attempts to deoxygenate the solvent by purging 

the solvent with argon were unfruitful in preventing the conversion of 1-93 to 1-96. Since 

it became apparent the aldehyde 1-93, we decided to re-visit our retrosynthetic plan and 

approach the synthesis of the isobutylene chain in a different manner.  

 Revised Retrosynthetic Plan A 

As the Stille coupling for the bis-indole framework was still a viable route, we needed a 

new route to access the isobutylene side chain. In the revised retrosynthesis (Scheme 

1-24), we focused on converting the diester moiety of pyrroloindole 1-87 to alcohol 1-98 

via a mono-Grignard addition to one of the diesters of compound 1-87. The resulting 
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ester on compound 1-97 would be cleaved by a Krapcho decarboxylation and reduction 

of the resulting ketone would give alcohol 1-98. Dehydration of alcohol 1-98 would yield 

the desired isobutylene side chain of the flinderoles. It is important to note that in the 

dehydration step, we run into the possibility of forming the two alkenes: (1) the isolated 

alkene giving the isobutylene side chain, and (2) the conjugated alkene to the indole. It is 

most likely that the alkene formed will be the conjugated product, but at this point in the 

synthesis, we are interested in investigating the chemistry to functionalize the diester 

moiety of the pyrroloindole. In the dehydration step, we would be employing various 

dehydration methods and dehydrating agents, such as the Burgess reagent, to form the 

desired alkene. 

 

Scheme 1-24. Revised retrosynthetic plan A- for the synthesis of flinderole B or C. 

Again, a model study was used explore the optimal conditions required to synthesize the 

desired isobutylene side chain. By following a protocol published by France and co-

workers - where a mono-addition of a Grignard reagent was accomplished to the one of 

the esters in a DA cyclopropane30 - pyrroloindole 1-54e was reacted with 

isopropylmagnesium chloride (1-99) in THF cooled to -78 °C and warmed to room 

temperature (Scheme 1-25); however, the isolated product of the reaction was the mono-

ester 1-92, which was previously obtained via a Krapcho decarboxylation reaction 

(Scheme 1-23). 
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Scheme 1-25. Grignard reaction of pyrroloindole 1-54e with isopropylmagnesium 

chloride. 

Since the Grignard reaction presented in Scheme 1-25 failed, we hoped that the reaction 

of pyrroloindole 1-54e with isopropenylmagnesium bromide 1-100 (Scheme 1-26) would 

yield the single addition product. By following the same conditions as above, compound 

1-101 was not produced, and instead, a mixture of side products and decomposition of the 

starting material was obtained.  

 

Scheme 1-26. Attempts towards the synthesis of 1-101 via a mono-Grignard addition. 

With the failed Grignard reactions with pyrroloindole 1-54e (Scheme 1-25 and Scheme 

1-26), we decided to attempt the Grignard reaction via a Weinreb amide as it might 

favour single addition product and prevent starting material decomposition. To begin the 

conversion to Weinreb amide 1-103 (Scheme 1-27), pyrroloindole 1-92 was treated with 

1.7 M NaOH in MeOH at room temperature to obtain acid 1-102 in a quantitative yield. 

The resulting acid was then treated with mesityl chloride to form the acid chloride, in 

situ, which was then added to a solution of N,O-dimethyl- hydroxylammonium chloride, 

free-based with triethylamine (Et3N), in CH2Cl2. Unfortunately, the reaction gave only 

decomposition of the starting material and no significant yield of Weinreb 1-103 was 

obtained.  
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Scheme 1-27. Attempt to synthesize Weinreb amide 1-103. 

A pattern observed in each of the reactions tested above is that either mono-ester 1-92 or 

the carboxylic acid 1-102 always seemed to decompose to many unresolved compounds 

during the reaction. The decomposition was a bit worrisome as we observed a similar 

outcome with aldehyde 1-93 (Scheme 1-23). A similar test to aldehyde 1-93 was 

performed on compounds 1-92 and 1-102. Test results showed significant decomposition 

of the starting material and the appearance of 1-96 (Table 1-2). Since the route showed no 

promise, an alternative route was proposed for the synthesis of the isobutylene side chain 

of the flinderoles. 

 Revised Retrosynthesis Plan B 

Our last attempt towards the flinderoles can be seen in the revised retrosynthesis below 

(Scheme 1-28). The major difference in this approach is the use of methyl 1-

isobutyrylcyclopropanecarboxylate 1-104. Since the alcohol will be pre-installed in the 

cyclopropane, all that would be required is removal of the ester by Krapcho 

decarboxylation in 1-97. Dehydration of 1-98 would yield isobutylene side chain of the 

flinderoles, or as previously stated in Section 1.5.2.3, we could also obtain the conjugated 

alkene. 
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Scheme 1-28. Revised retrosynthesis B. 

As a model study, we sought out to synthesize cyclopropane 1-104, since the starting 

materials to synthesize of cyclopropane 1-104 are more expensive, and during the 

cyclopropanation reaction, by-products are often formed, resulting in low yields. (Table 

1-3). Reacting phenyl styrene 1-108 and methyl 2-diazo-4-methyl-3-oxopentanoate31,32 1-

107 under Rh2(esp)2 catalyzed cyclopropanation conditions (entries 1-2, Table 1-3) did 

not yield any of the desired product. Changing the catalyst to Rh2(OAc)4 in toluene 

heated to 110 °C (entries 3 and 4,Table 1-3) with varying equivalents of the diazo 

compound 1-107 resulted in no reaction and only starting material was recovered. 

Changing the solvent to benzene heated to 80 °C also resulted in the full recovery of the 

starting materials. 
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Table 1-3. Rhodium catalyzed reactions attempted to synthesize methyl 1-isobutyryl-2-

methyl-2-phenylcyclopropane-1-carboxylate (1-104). 

 

We next thought to employ France and co-workers method of the mono-addition reaction 

of a Grignard reagent to one of the ester moiety of a DA cyclopropane.30 In turn,  

dimethyl 2-methyl-2-phenylcyclopropane-1,1-dicarboxylate (1-52e) was reacted with 

isopropylmagnesium chloride (1-99)  in THF cooled to -78 °C and then warmed to room 

temperature (Scheme 1-29). Unfortunately, the reaction only gave some recovered 

starting material cyclopropane, and other side products, with signs of ketone 1-104. 

 

Scheme 1-29. Attempts to synthesize methyl 1-isobutyryl-2-methyl-2-

phenylcyclopropane-1-carboxylate 1-104. 
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 In the hopes to obtain DA cyclopropane in one step, we decided to approach the 

Grignard addition via an acid chloride or Weinreb amide intermediate (Scheme 1-30).30 

were also attempted, but did not work, despite being able to access cyclopropane 

hemimalonate 1-109.  

 

Scheme 1-30. Attempts to synthesize acid chloride and Weinreb amide for the formation 

of 1-110 and 1-111, respectively. 

It was not until cyclopropane 1-52e was reacted with isopropenylmagnesium bromide     

1-100 that an appreciable amount, 33%, of cyclopropane 1-112 was obtained (Scheme 

1-31).   

 

Scheme 1-31. Synthesis of cyclopropane 1-112 via a mono-Grignard addition. 

With cyclopropane 1-112 in hand, we then proceeded to reduce the alkene. Reacting 

cyclopropane 1-112 with tosylhydrazide and sodium acetate (NaOAc) in a 1:1 mixture of 

THF/H2O heated to 70 °C for 18 h (Scheme 1-32),33 gave compound 1-104 in a 36% 

yield and a 5:1 dr. The low yield of this reaction is due to the formation of multiple 

unidentified by-products in the reaction and difficulty to obtain a single clean product 

during purification by flash column chromatography. Following our general reaction 

conditions for ring opening and oxidative cyclization methodology, we obtained 
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pyrroloindole 1-113 in a 23% overall yield and a 1.6:1 dr. Krapcho decarboxylation of 1-

113 gave ketone 1-114 in a 35% yield, which was then reduced to the secondary alcohol 

1-115 by employing Luche reducing conditions in a 40% yield.34  

 

Scheme 1-32. Reaction sequence towards the synthesis of alcohol 1-115.  

With the alcohol finally obtained, we could now test the dehydration reaction, with the 

model study, to synthesize the isobutylene side chain (Scheme 1-33). Dehydration 

conditions to synthesize the isobutylene moiety included treatment of the secondary 

alcohol with either SOCl2 and pyridine35 or Burgess reagent36. While the use SOCl2 

resulted in decomposition of the starting material, the reaction with the Burgess reagent 

gave traces of the desired product, but the major product was alkene 1-116, based on the 

crude mixture 1H NMR. 
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Scheme 1-33. Dehydration attempts on alcohol 1-115. 

 As only a small amount of the two mixed products was obtained (~4 mg), the difficulty 

by which product 1-117 was formed (8 steps), and the fact that our proposed synthesis 

was not any more efficient than the already published protocols, we decided to terminate 

the project. 

1.6 Summary and Future Work 

The reactivity and use of quaternary DA cyclopropanes for the synthesis of 

pyrroloindoles is highly valuable and a growing approach towards the synthesis of 

pyrroloindole natural products. The work presented in chapter one is of foremost 

importance to the synthetic community as it provides a new method for the development 

of highly functionalized pyrroloindole scaffolds. The developed methodology has 

allowed us to synthesize over 7 pyrroloindole scaffolds with varying substitution and a 

quaternary centre in two steps. The application of the methodology for the total synthesis 

of the flinderoles A, B, and C has been showcased. During this study, the bis-indole 

scaffold of the flinderoles was successfully synthesized, however, we encountered 

multiple issues during the synthesis of the isobutylene side chain. Despite our failed 

efforts to complete the total synthesis of the flinderoles, our proposed method for the 

synthesis of the pyrroloindole scaffold of the flinderoles is nonetheless an interesting 

reaction that explores further manipulation of the easily prepared heterocycle. The newly 
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developed methodology provides chemists with the opportunity to synthesize flinderole 

derivatives for drug development. 

1.7 Experimental 

All reactions were carried under an Argon atmosphere unless indicated. Toluene, 

tetrahydrofuran (THF), N,N-dimethylformamide (DMF), and dichloromethane (CH2Cl2) 

were dried and deoxygenated by passing the nitrogen purged solvents through activated 

alumina columns. All other reagents and solvents were used as purchased from Sigma 

Aldrich, Caledon or VWR.  Reaction progress was followed by thin layer 

chromatography (TLC) (EM Science, silica gel 60 F254) visualizing with UV light, and 

the plates were developed using acidic anisaldehyde. Flash column chromatography was 

performed using silica gel purchased from Silicycle Chemical Division Inc. (230-400 

mesh). 

NMR experiments were performed on the Varian Mercury 400 and Inova 400 

instruments; samples were obtained in CDCl3 (referenced to 7.26 ppm for 1H and 77.0 

ppm for 13C). Coupling constants (J) are in Hz. The multiplicities of the signals are 

described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = 

quartet, m = multiplet, b = broad. Infrared spectra were obtained as thin films on NaCl 

plates using the Bruker Vector 33 FT-IR instrument.  High resolution mass spectra 

(HRMS) were obtained on a Thermo Scientific DFS (Double Focusing Sector). Melting 

points were determined using a Gallenkamp melting point apparatus and were 

uncorrected. Microwave reactions were performed in a 400 W Biotage Initiator 2.0 

microwave reactor. 

Synthesis of compound 1-83c 

 (3-methylbut-3-en-1-yn-1-yl)benzene (1-83c).   

Commercially available phenylacetylene (100 mg, 0.980 mmol, 1 

equiv) was dissolved in 5 mL of dry Et3N, followed by the addition of commercially 

available 2-bromoprop-1-ene (142 mg, 1.18 mmol, 1.2 equivs), copper iodide (CuI) (95 
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mg, 0.050 mmol, 5 mol %), and Pd(PPh3)4 (29 mg, 0.025 mmol, 2.5 mol %). The reaction 

mixture was heated to 90 oC for 12 hours. The reaction was cooled to room temperature 

and the solvent was removed in vacuo. The crude product was dissolved in 20 mL of 

CH2Cl2 and washed with water (2 x 10 mL). The organic portion was dried over MgSO4, 

filtered, and concentrated. Purification of the crude reaction mixture by column 

chromatography gave the title compound (84 mg, 0.587 mmol, 60%) as colourless oil. 

Spectral data for this compound matched the previously reported.37  

Experimental Procedure A: Synthesis of quaternary donor acceptor cyclopropanes. 

 

Cyclopropanes 1-52a-e were prepared according to the following procedure. In a 10 mL 

or 25 mL round-bottomed flask was added the corresponding alkene 1-83 derivative (1.0 

equiv), CH2Cl2 (4 mL - 8 mL) and Rh2(esp)2 catalyst (0.1 mol %). The diazomalonate (1-

82a) (1.3 equiv) was dissolved in CH2Cl2 (3 mL) and added dropwise over a period of 45 

mins - 1 h at room temperature. The reaction was stirred at room temperature for 1.5 - 3 h 

(monitored by TLC). The crude reaction mixture was concentrated, pre-absorbed onto 

silica gel, and purified by column chromatography (EtOAc in Hexanes). 

Dimethyl 2-ethynyl-2-methylcyclopropane-1,1-dicarboxylate (1-52a). 

. Following experimental procedure A, cyclopropane 1-52a was prepared 

by dissolving commercially available 2-methylbut-1-en-3-yne (1-83a) (500 mg, 7.56 

mmol) and Rh2(esp)2 (5.73 mg, 0.008 mmol) in 5 mL of CH2Cl2 followed by the addition 

of diazomalonate (1-82a) (1055 mg, 9.82 mmol) dissolved in 3 mL of CH2Cl2. The 

reaction was stirred at room temperature for 2.5 h. Cyclopropane 1-52a (518 mg, 2.64 

mmol, 35%) was obtained as a colourless oil. Rf = 0.47 (30% EtOAc in hexanes). 1H 

NMR (400 MHz, CDCl3): δ = 3.78 (s, 6H), 2.09 (s, 1H), 1.94 (d, J = 5.0 Hz, 1H), 1.60 

(d, J = 5.0 Hz, 1H), 1.47 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 167.1, 167.0, 83.5, 
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68.3, 52.5, 39.9, 26.8, 22.8, 19.9. FT-IR (thin film, cm-1): 3280, 3001, 2954, 2117, 1738, 

1436, 1335, 1250, 1118. HRMS calc'd for C10H12O4 [M+]: 196.0736; found: 196.0733. 

Dimethyl 2-(but-1-ynyl)-2-methylcyclopropane-1,1-dicarboxylate 

(1-52b).  

Following experimental procedure A, cyclopropane 1-52a was prepared 

by dissolving commercially available 2-methylhex-1-en-3-yne (1-83b) (500 mg, 5.31 

mmol) and Rh2(esp)2 (4.02 mg, 0.005 mmol) in 5 mL of CH2Cl2 followed by the addition 

of diazomalonate (1-82a) (1090 mg, 6.90 mmol) dissolved in 3 mL of CH2Cl2. The 

reaction was stirred at room temperature for 3 h. Cyclopropane 1-52b (1010 mg, 4.50 

mmol, 85%) was obtained as a colourless oil. Rf = 0.51 (30% EtOAc in hexanes).                   

1H NMR (400 MHz, CDCl3): δ = 3.68 (s, 3H), 3.67 (s, 3H), 2.04 (q, J = 7.8 Hz, 2H), 

1.79 (d, J = 4.7 Hz, 1H), 1.47 (d, J = 4.7 Hz, 1H), 1.35 (s, 3H), 0.99 (t, J = 7.8 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ = 167.6, 167.3, 82.0, 79.2, 52.5, 52.4, 40.3, 27.1, 23.9, 

20.4, 13.7, 12.1. FT-IR (thin film, cm-1): 2976, 2933, 2128, 1739, 1436, 1329, 1234, 

1119. HRMS calc'd for C12H16O4 [M+]: 224.1049; found: 224.1053. 

Dimethyl 2-methyl-2-(phenylethynyl)cyclopropane-1,1-

dicarboxylate (1-52c).                                                                                                 

 Following experimental procedure A, cyclopropane 1-52c was 

prepared by dissolving (3-methylbut-3-en-1-yn-1-yl)benzene (1-83c) 

(395 mg,  2.78 mmol) and Rh2(esp)2 (2.10 mg, 0.003 mmol) in 3 mL of CH2Cl2 followed 

by the addition of  diazomalonate (1-82a) (571 mg, 3.61 mmol) dissolved in 3 mL of 

CH2Cl2. The reaction was stirred at room temperature for 1.5 h.  Cyclopropane 1-52c 

(707 mg, 2.59 mmol, 93%) was obtained as a colourless oil. Rf = 0.51 (30% EtOAc in 

hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.35 (dd, J = 5.9, 2.3 Hz, 2H), 7.25 (m, 3H), 

3.77 (s, 3H), 3.75 (s, 3H), 2.03 (d, J = 5.0 Hz, 1H), 1.69 (d, J = 5.0 Hz, 1H), 1.54 (s, 3H). 

13C NMR (100 MHz, CDCl3): δ = 167.7, 167.4, 131.6, 128.2, 128.0, 122.8, 89.5, 80.5, 

52.8, 40.9, 27.5, 24.3, 20.2. FT-IR (thin film, cm-1):  2998, 2952, 2198, 1736, 1435, 

1237, 1116. HRMS calc'd for C16H16O4 [M+]: 272.1049; found: 272.1056. 
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Dimethyl 2-methyl-2-vinylcyclopropane-1,1-dicarboxylate (1-52d). 

 Following experimental procedure A, cyclopropane 1-52d was prepared 

by dissolving commercially available isoprene (1-83d) (500 mg, 7.34 mmol) and 

Rh2(esp)2 (5.57 mg, 0.007 mmol) in 5 mL of CH2Cl2 followed by the addition of 

diazomalonate (1-82a) (1740 mg, 11.01 mmol) dissolved in 3 mL of CH2Cl2. The 

reaction was stirred at room temperature for 3 h. Cyclopropane 1-52d (754 mg, 3.80 

mmol, 52%) was obtained as a 67:33 inseparable mixture of isomers and as a colourless 

oil. Rf = 0.56 (30% EtOAc in hexanes). Spectral data for this compound matched the 

previously reported.38 

Dimethyl 2-methyl-2-phenylcyclopropane-1,1-dicarboxylate (1-

52e). 

Following experimental procedure A, cyclopropane 1-52e was prepared by dissolving 

commercially available α-methylstyrene (1-83e) (500 mg, 4.23 mmol) and Rh2(esp)2 

(3.20 mg, 0.004 mmol) in 5 mL of CH2Cl2 followed by the addition of diazomalonate (1-

82a) (1030 mg, 6.34 mmol) dissolved in 3 mL of CH2Cl2. The reaction was stirred at 

room temperature for 3 h. Cyclopropane 1-52e (1030 mg, 4.15 mmol, 98%) was obtained 

as colourless oil. Rf = 0.56 (30% EtOAc in hexanes). Spectral data for this compound 

matched the previously reported.38 

Experimental procedure B: Lewis acid catalyzed nucleophilic ring opening of 

quaternary DA cyclopropanes with indoline. 

 

Compounds 1-53a-g were prepared according to the following procedure. To a solution 

of the cyclopropane 1-5a-e (1 equiv) in 5 – 10 mL of toluene, indoline 1-35a, 1-35c, 1-
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35d (2 equiv) and Sc(OTf)3 catalyst (10 mol %) (Method A) or Yb(OTf)3 catalyst (5 mol 

%) (Method B) were added. The reaction mixture was heated to 100 oC for 1.5 -3 hours 

(monitored by TLC). The mixture was then cooled to room temperature and diluted with 

1M HCl (20 mL). The organic layer was collected and the aqueous layer was extracted 

with EtOAc (2 x 15 mL). The organic layers were combined, washed once with brine, 

dried over MgSO4, and filtered. The filtrate was concentrated and purified by column 

chromatography (EtOAc in Hexanes). 

Dimethy1-2-(2-(indolin-1-yl)-2-methylbut-3-ynyl)malonate (1-53a).  

Following experimental procedure B (Method A), N-alkylindoline 1-

53a was prepared by dissolving cyclopropane 1-52a (200 mg, 1.02 

mmol), Sc(OTf)3 (50 mg, 0.102 mmol), and indoline 1-35a (243 mg, 

2.04 mmol) in 8 mL of toluene. The reaction was hated to 100 oC for 2 h. Compound 1-

53a (285 g, 0.903 mmol, 88%) was obtained as a brown oil. Rf = 0.47 (30% EtOAc in 

hexanes). 

Following experimental procedure B (Method B), N-alkylindoline 1-53a was prepared 

by dissolving cyclopropane 1-52a (169 mg, 0.861 mmol), Yb(OTf)3 (27 mg, 0.043 

mmol), and indoline 1-35a (204 mg, 1.72 mmol) in 5 mL of toluene. The reaction was 

hated to 100 oC for 2 h. Compound 1-53a (209 mg, 0.680 mmol, 77%) was obtained as a 

brown oil. 

1H NMR (400 MHz, CDCl3): δ = 7.10 (m, 3H), 6.70 (m, 1H), 3.86 (t, J = 5.9 Hz, 1H), 

3.65 (s, 3H), 3.63 (s, 3H), 3.43 (td,  J = 7.8, 1.9 Hz, 1H),  2.88 (t, J = 7.8 Hz, 2H), 2.73 

(dd, J = 14.4, 5.8 Hz, 1H), 2.55 (dd, J = 14.4, 7.0 Hz, 1H), 2.44 (s, 1H), 1.55 (s, 3H). 13C 

NMR (100 MHz, CDCl3): δ = 169.7, 169.6, 148.9, 126.6, 124.3, 118.5, 111.6, 84.9, 73.3, 

54.1, 52.4, 49.9, 48.5, 37.9, 27.9, 23.4. FT-IR (thin film, cm-1): 3272, 2990, 2952, 2844, 

2112, 1732, 1605, 1483, 1331, 1263, 1155, 750, 655. HRMS calc'd for C18H21NO4 [M+]: 

315.1471; found: 315.1474. 

Dimethyl 2-(2-(indolin-1-yl)-2-methylhex-3-ynyl)malonate (1-53b).. 

Following experimental procedure D (Method A), N-alkylindoline 1-
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53b was prepared by dissolving cyclopropane 1-52b (332 mg, 1.48 mmol), Sc(OTf)3 (73 

mg, 0.148 mmol), and indoline 1-35a (353 mg, 2.96 mmol) in 10 mL toluene. The 

reaction was hated to 100 oC for 2 h. Compound 1-53b was obtained as a yellow oil (365 

mg, 1.06 mmol, 72%). Rf = 0.50 (30% EtOAc in hexanes). 

Following experimental procedure D (Method B), N-alkylindoline 1-53b was prepared 

by dissolving cyclopropane 1-52b (100 mg, 0.446 mmol), Yb(OTf)3 (14 mg, 0.022 

mmol), and indoline 1-35a (106 mg, 0.892 mmol) in 5 mL of toluene. The reaction was 

hated to 100 oC for 2 h. Compound x (122 mg, 0.356 mmol, 80%) was obtained as a 

yellow oil. 

1H NMR (400 MHz, CDCl3): δ = 7.13 (d, J = 7.8 Hz, 2H), 7.04 (dd, J = 7.8, 2.4 Hz,  

2H), 6.67, (m, 1H), 3.86 (t, J = 6.6 Hz, 1H), 3.67 (s, 3H), 3.62 (s, 3H), 3.38-3.44 (m, 2H), 

2.86 (t,  J = 8.9 Hz, 2H), 2.68 (dd, J = 14.4, 5.5 Hz, 1H), 2.46 (dd, J = 14.1, 6.6 Hz, 1H), 

2.20 (q, J = 7.4 Hz, 2H), 1.49 (s, 3H), 1.13 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, 

CDCl3): δ = 169.9, 169.6, 149.2, 131.5, 126.4, 124.0, 117.9, 111.6, 86.8, 80.2, 54.0, 52.4, 

49.6, 48.6, 38.0, 27.8, 23.3, 13.6, 12.2. FT-IR (thin film, cm-1): 3102, 3043, 2978, 2951, 

2844, 2245, 1735, 1604, 1483, 1435, 1330, 1244, 1149, 748. HRMS calc'd for 

C20H25NO4 [M+]: 343.1784; found: 343.1772. 

.Dimethyl 2-(2-(indolin-1-yl)-2-methyl-4-phenylbut-3-ynyl)malonate 

(1-53c).  

Following experimental procedure B (Method A), N-alkylindoline 1-53c 

was prepared by dissolving cyclopropane 1-52c (378 mg, 1.39 mmol), Sc(OTf)3 (68 mg, 

0.139 mmol), and indoline 1-35a (331 mg, 2.78 mmol) in 10 mL of toluene. The reaction 

was hated to 100 oC for 3 h. Compound x (428 mg, 1.09 mmol, 79%) was obtained as a 

yellow oil.  Rf = 0.55 (30% EtOAc in hexanes).  

Following experimental procedure B (Method B), N-alkylindoline 1-53c was prepared 

by dissolving cyclopropane 1-52c (234 mg, 0.858 mmol), Yb(OTf)3 (27 mg, 0.043 

mmol), and indoline 1-35a (204 mg, 1.72 mmol) in 10 mL of toluene. The reaction was 
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hated to 100 oC for 3 h. Compound 1-53c (122 mg, 0.356 mmol, 79%) was obtained as a 

yellow oil. 

1H NMR (400 MHz, CDCl3): δ =  7.43 (dd, J =  7.3, 2.7 Hz, 2H), 7.32-7.28 (m, 3H), 

7.23 (d, J = 8.2 Hz, 1H), 7.08 (dd, J = 7.4, 2.7 Hz,  1H), 6.71 (m, 1H), 3.94 (dd, J = 7.0, 

5.5 Hz, 1H), 3.62 (s, 3H), 3.58 (s, 3H), 3.50-3.42 (m, 2H), 2.94-2.89 (m, 2H), 2.79 (dd, J 

= 14.5, 5.5 Hz, 1H), 2.61 (dd, J = 14.5, 5.5 Hz,  1H), 1.61 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ = 169.9, 169.7, 149.3, 131.6, 128.2, 126.7, 124.3, 122.6, 118.4, 111.7, 90.7, 

85.2, 54.6, 52.6, 49.7, 48.6, 38.3, 28.0, 23.0. FT-IR (thin film, cm-1): 3021, 2951, 2843, 

1735, 1604, 1483, 1247, 1157. HRMS calc'd for C24H25NO4 [M+]: 391.1784; found: 

391.1770. 

Dimethyl 2-(2-(indolin-1-yl)-2-methylbut-3-enyl)malonate (1-53d).   

Following experimental procedure B (Method A), N-alkylindoline x was 

prepared by dissolving cyclopropane 1-52d (200 mg, 1.00 mmol), 

Sc(OTf)3 (49 mg, 0.101 mmol), and indoline 1-35a (240 mg, 2.00 mmol) 

in 8 mL of toluene. The reaction was hated to 100 oC for 3 h. Compound 1-53d (135 mg, 

0.444 mmol, 44%) was obtained as a brown oil. Rf = 0.55 (30% EtOAc in hexanes). 

Following experimental procedure B (Method B), N-alkylindoline 1-53d was prepared 

by dissolving cyclopropane 1-52d (436 mg, 2.20 mmol), Yb(OTf)3 (68 mg, 0.110 mmol), 

and indoline 1-35a (525 mg, 4.40 mmol) in 10 mL toluene. The reaction was hated to 100 
oC for 3 h. Compound 1-53d (334 mg, 1.09 mmol, 50%) was obtained as a brown oil. 

1H NMR (400 MHz, CDCl3): δ = 7.04 (d, J = 8.2 Hz, 1H), 6.93 (m, 1H), 6.73 (m, J = 7.8 

Hz, 1H), 6.63 (m, 1H), 5.96 (dd, J = 18.0, 10.9 Hz, 1H), 5.19 (dd, J = 11.7, 9.7 Hz, 2H), 

3.71 (s, 3H), 3.68 (dd, J = 8.2, 4.3 Hz, 1H), 3.59 (s, 3H), 3.52-3.47 (m, 1H), 3.35-3.28 

(m, 1H), 2.95-2.83 (m, 2H), 2.53 (dd, J = 14.8, 8.2 Hz, 1H), 2.43 (dd, J = 14.8, 4.3 Hz, 

1H), 1.29 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 170.2, 170.1, 150.0, 142.8, 131.5, 

126.4, 124.2, 117.6, 114.7, 111.7, 59.4, 52.7, 52.3, 49.2, 47.7, 38.6, 28.0, 19.1. FT-IR 

(thin film, cm-1): 3272, 2990, 2952, 2844, 1732, 1605, 1483, 1263, 1155. HRMS calc'd 

for C18H23NO4 [M+]: 315.1471; found: 315.1474. 
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Dimethyl 2-(2-(indolin-1-yl)-2-phenylpropyl)malonate (1-53e). 

 Following experimental procedure B (Method A), N-alkylindoline 1-

53e was prepared by dissolving cyclopropane 1-52e (219 mg, 0.881 

mmol), Sc(OTf)3 (43 mg, 0.088 mmol), and indoline 1-35a (210 mg, 

1.76 mmol) in 8 mL of toluene. The reaction was hated to 100 oC for 2.5 h. Compound 1-

53e (246 mg, 0.670 mmol, 76%) was obtained as a white solid. Mp = 126-128 oC. Rf = 

0.57 (30% EtOAc in hexanes). 

Following experimental procedure B (Method B), N-alkylindoline 1-53e was prepared 

by dissolving cyclopropane 1-52e (100 mg, 0.402 mmol), Yb(OTf)3 (13 mg, 0.020 

mmol), and indoline 1-35a (96 mg, 0.805 mmol) in 5 mL of toluene. The reaction was 

hated to 100 oC for 2.5 h. Compound 1-53e (140 mg, 0.380 mmol, 85%) was obtained as 

a white solid. 

1H NMR (400 MHz, CDCl3): δ = 7.47 (d, J = 8.6 Hz, 2H), 7.30 (m, 2H), 7.23 (m, 1H), 

7.05 (d, J = 7.0 Hz, 1H), 6.67 (m, 1H), 6.56 (m, 1H), 5.60 (d, J = 7.8 Hz, 1H), 3.78-3.73 

(td, J = 8.6, 2.4 Hz, 1H), 3.61 (s, 3H), 3.56 (t, J = 5.8 Hz, 1H), 3.52-3.44 (m, 1H), 3.39 (s, 

3H), 3.05-2.97 (m, 2H), 2.64 (d, J = 5.8 Hz, 2H), 1.53 (s, 3H). 13C NMR (100 MHz, 

CDCl3): δ = 170.0 169.4, 149.6, 143.8, 131.4, 126.4, 126.8, 126.2, 124.1, 117.5, 112.0, 

60.7, 52.7, 52.3, 49.1, 47.7, 41.5, 28.3, 18.4. FT-IR (thin film, cm-1): 2951, 2842, 1752, 

1734, 1604, 1484, 1435, 1244, 1202, 1158, 748, 702. HRMS calc'd for C22H25NO4 [M+]: 

367.1784; found: 367.1785. 

Dimethyl 2-(2-(3-(2-(tert-

butyldimethylsilyloxy)ethyl)indolin-1-yl)-2-methylbut-3-

ynyl)malonate (1-53f). 

 Following experimental procedure B (Method A), N-

alkylindoline 1-53f was prepared by dissolving cyclopropane 1-52a (100 mg, 0.510 

mmol), Sc(OTf)3 (25 mg, 0.051 mmol), and 3-(2-(tert-

butyldimethylsilyloxy)ethyl)indoline 1-35c39 (282 mg,  1.01 mmol) in 5 mL of  toluene. 

The reaction was hated to 100 oC for 1.5 h. Compound 1-53f (211 mg, 0.448 mmol, 80%) 
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was obtained in a 1:1 mixture of diastereomers and as a brown oil. Rf = 0.51 (30% 

EtOAc in hexanes).  

1H NMR (400 MHz, CDCl3) (mixture of diastereomers): δ = 7.10-7.07 (m, 2H), 7.05 (d, 

J = 5.1 Hz, 4H), 6.75-6.70 (m, 2H), 3.86-3.82 (m, 2H), 3.73 (td, J = 6.3, 3.1 Hz, 4H), 

3.68 (s, 3H), 3.65 (s, 3H), 3.62 (s, 4H), 3.59 (s, 4H), 3.23-3.19 (m, 2H), 3.13 (t, J = 8.21 

Hz, 1H), 3.08 (t, J = 8.21 Hz, 1H), 2.80-2.67 (m, 2H), 2.63-2.46 (m, 2H), 2.44 (s, 1H), 

2.42 (s, 1H), 2.09-1.98 (m, 2H), 1.76-1.68 (m, 2H), 1.55 (s, 3H), 1.53 (s, 3H), 0.91 (s, 

18H), 0.08 (s, 12H). 13C NMR (100 MHz, CDCl3): δ = 169.9, 169.8, 169.6, 169.5, 148.7, 

148.5, 135.3, 126.8, 126.7, 123.5, 123.2, 118.5, 118.4, 111.7, 111.6, 85.1, 84.9, 73.3, 

61.5, 61.4, 56.4, 56.3, 54.2, 53.9, 52.6, 52.4, 48.6, 48.4, 38.4, 37.5, 36.9, 36.8, 36.7, 36.6, 

25.9, 23.6, 23.5, 18.3, 18.2, -5.3, -5.2. FT-IR (thin film, cm-1): 3273, 2952, 2930, 2856, 

1736, 1482, 1436, 1256, 1094. HRMS calc'd for C26H39NO5Si [M+]: 473.2597; found: 

473.2599. 

Dimethyl 2-(2-(3-(cyanomethyl)indolin-1-yl)-2-methylbut-3-

ynyl)malonate (1-53g). 

 Following experimental procedure B (Method A), N-

alkylindoline 1-53g was prepared by dissolving cyclopropane 1-52a (390 mg, 1.98 mmol, 

1 equiv), Sc(OTf)3 (97 mg, 0.198 mmol, 10 mol %), and 2-(indolin-3-yl)acetonitrile 1-

35d40 (314 mg,  1.98 mmol, 1 equiv) in 10 mL of  toluene. The reaction mixture was 

heated to 100 oC for 3 hours.  Compound 1-53g (445 mg, 1.25mmol, 63%) in a 1:1 

mixture of diastereomers and as yellow oil. Rf = 0.24 (30% EtOAc in hexanes). 

 1H NMR (400 MHz, CDCl3) (mixture of diastereomers): δ = 7.19 (d, J = 7.4 Hz, 2H), 

7.15-7.11 (m, 3H), 7.02 (d, J = 7.8 Hz, 1H), 6.81-6.78 (m, 2H), 3.83 (t, J = 6.3 Hz, 1H), 

3.79 (t, J = 6.6 Hz, 1H), 3.68 (s, 3H), 3.67 (s, 3H), 3.61 (s, 3H), 3.50 (s, 3H), 3.47-3.42 

(m, 2H). 3.39-3.31 (m, 2H), 2.83 (dd, J = 14.0, 7.0 Hz, 1H), 2.69-2.64 (m, 2H), 2.64 (s, 

2H), 2.62 (s, 1H), 2.49 (s, 2H), 2.46 (s, 1H), 1.59 (s, 3H0, 1.57 (s, 3H). 13C NMR (100 

MHz, CDCl3): δ = 169.6, 169.6, 169.5, 169.3, 148.3, 147.9, 131.5, 131.2, 128.3, 128.2, 

123.9, 123.8, 119.2, 119.1, 118.5, 112.3, 112.1, 84.6, 84.2, 73.7, 55.8, 54.9, 54.6, 53.9, 

52.7, 52.6, 52.5, 52.4, 48.8, 48.3, 38.4, 38.0, 36.6, 36.5, 23.8, 23.2, 21.8, 21.9. FT-IR 
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(thin film, cm-1): 3269, 2950, 2849, 2247, 1731, 1604, 1483, 1434, 1262, 1198, 1154. 

HRMS calc'd for C20H22N2O4 [M+]: 354.1580; found: 354.1584. 

Experimental procedure C: Mn(OAc)3 mediated radical oxidative cyclizations of N-

alkylindolines to pyrroloindoles. 

 

Compounds 1-54a-g were prepared according to the following procedure. To a solution 

of N-alkylindoline 1-53a-g (1 equiv) in 8 - 15 mL of MeOH was added Mn(OAc)3 (5 

equiv). The reaction mixture was heated to 70 oC for 1 - 3 hours (monitored by TLC). 

The crude reaction mixture was concentrated, pre-absorbed onto silica gel, and purified 

by column chromatography (EtOAc in Hexanes). 

Dimethyl 3-ethynyl-3-methyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1,1-dicarboxylate (1-54a). 

 Following experimental procedure C, pyrroloindole 1-54a was 

prepared by dissolving N-alkylindoline 1-53a (618 mg, 1.96 mmol) and Mn(OAc)3 (2620 

mg, 9.79 mmol) in 15 mL of MeOH. The reaction was hated to 70 oC for 1 h. Compound 

1-54a (397 mg, 1.28 mmol, 65%) was obtained as a brown solid. Mp = 82-84 oC. Rf = 

0.53 (30% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 7.8 Hz, 

1H), 7.57 (d, J = 7.8 Hz, 1H), 7.21 (m, 1H), 7.13 (m, 1H), 6.51 (s, 3H), 3.82 (s, 6H), 3.63 

(d, J = 13.6 Hz, 1H), 3.37 (d, J = 13.6 Hz, 1H), 2.54 (s, 1H), 1.90 (s, 3H) . 13C NMR 

(100 MHz, CDCl3): δ = 169.3, 168.9, 137.6, 133.0, 131.2, 121.8, 121.7, 120.1, 110.3, 

97.3, 83.9, 72.4, 58.2, 55.1, 53.5, 51.7, 28.1. FT-IR (thin film, cm-1): 3275, 2953, 2112, 

1741, 1449, 1256, 1159. HRMS calc'd for C18H17NO4 [M+]: 311.1158; found: 311.1153. 
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Dimethyl 3-(but-1-ynyl)-3-methyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1,1-dicarboxylate (1-54b). 

  Following experimental procedure C, pyrroloindole 1-54b was 

prepared by dissolving N-alkylindoline 1-53b (276 mg, 0.804 mmol) 

and Mn(OAc)3 (1070 mg, 4.02 mmol) in 8 mL of MeOH. The reaction was hated to 70 oC 

for 1.5 h. Compound 1-54b (177 mg, 0.523 mmol, 65%) was obtained as a yellow oil. Rf 

= 0.51 (30% EtOAc in hexanes).  1H NMR (400 MHz, CDCl3): δ = 7.59 (m, 2H), 7.18 

(m, 1H), 7.10 (m, 1H), 6.47 (s, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 3.55 (d, J = 13.7 Hz, 1H), 

3.32 (d, J = 13.7 Hz, 1H), 2.20 (q, J = 7.4 Hz, 2H), 1.81 (s, 3H), 1.12 (t, J = 7.4 Hz, 3H). 

13C NMR (100 MHz, CDCl3): δ = 169.5, 169.0, 137.5, 132.9, 131.2, 121.5, 119.8, 110.5, 

96.8, 86.2, 79.9, 58.3, 55.5, 53.5, 52.0, 28.6, 13.7, 12.3. FT-IR (thin film, cm-1): 2978, 

2952, 2845, 2242, 1742, 1449, 1254, 1161. HRMS calc'd for C20H21NO4 [M+]: 339.1471; 

found: 339.1458. 

Dimethyl 3-methyl-3-(phenylethynyl)-2,3-dihydro-1H-

pyrrolo[1,2-a]indole-1,1-dicarboxylate (1-54c). 

 Following experimental procedure C, pyrroloindole 1-54c was 

prepared by dissolving N-alkylindoline 1-53c (369 mg, 0.943 

mmol) and Mn(OAc)3 (1260 mg, 4.72 mmol) in 10 mL of MeOH. The reaction was hated 

to 70 oC for 1.5 h. Compound 1-54c (225 mg, 0.581 mmol) was obtained as a yellow 

solid (61%). Mp = 108-110 oC Rf = 0.48 (30% EtOAc in hexanes).  1H NMR (400 MHz, 

CDCl3): δ = 7.65-7.62 (m, 2H), 7.42-7.39 (m, 2H), 7.32-7.27 (m, 3H), 7.21 (m, 1H), 7.13 

(td, J = 7.0, 1.2 Hz, 1H), 6.52 (s, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.70 (d, J = 13.6 Hz, 

1H), 3.44 (d, J = 13.6 Hz, 1H), 1.96 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 169.4, 

168.9, 137.5, 132.9, 131.7, 131.3, 128.5, 128.3, 122.2, 121.7, 121.5, 120.0, 110.4, 97.1, 

89.3, 84.2, 58.3, 55.8, 53.6, 53.5, 51.9, 28.3. FT-IR (thin film, cm-1): 2996, 2952, 1742, 

1449, 1263, 1168. HRMS calc'd for C24H21NO4 [M+]: 387.1471; found: 387.1475. 
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Dimethyl 3-methyl-3-vinyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1,1-dicarboxylate (1-54d). 

 Following experimental procedure C, pyrroloindole 1-54d was 

prepared by dissolving N-alkylindoline 1-53d (398 mg, 1.31 mmol) and Mn(OAc)3 (1750 

mg, 6.53 mmol) in 10 mL of MeOH. The reaction was hated to 70 oC for 1 h. Compound 

1-54d (176 mg, 0.563 mmol, 43%) was obtained as a colourless oil. Rf = 0.57 (30% 

EtOAc in hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.2 Hz, 1H), 7.30 (d, J 

= 8.2 Hz, 1 H), 7.14-7.07 (m, 2H), 6.50 (s, 1H), 6.08 (dd, J = 17.5, 10.5 Hz, 1H), 5.18 (d, 

J = 10.5 Hz, 1H), 5.02 (d, J = 17.2 Hz, 1H) 3.82 (s, 3H), 3.77 (s, 3H), 3.24 (d, J = 13.6 

Hz, 1H), 3.18 (d, J = 13.6 Hz, 1H) 1.76 (s, 3H).13C NMR (100 MHz, CDCl3): δ = 169.6, 

169.5, 141.2, 138.5, 132.6, 131.6, 121.4, 121.3, 119.6, 114.4, 110.5, 96.6, 63.3, 58.3, 

53.5, 53.4, 50.9, 24.2. FT-IR (thin film, cm-1): 2986, 2953, 2881, 1741, 1449, 1256, 

1144, 1095. HRMS calc'd for C18H19NO4 [M+]: 313.1314; found: 313.1315. 

Dimethyl 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1,1-dicarboxylate (1-54e).  

Following experimental procedure C, pyrroloindole 1-54e was 

prepared by dissolving N-alkylindoline 1-53e (344 mg, 0.936 mmol) and Mn(OAc)3 

(1250 mg, 4.68 mmol) in 10 mL of MeOH. The reaction was hated to 70 oC for 2 h. 

Compound x (284 mg, 0.781 mmol, 83%) was obtained as colourless oil. Rf = 0.53 (30% 

EtOAc in hexanes).  1H NMR (400 MHz, CDCl3): δ = 7.67 (d, J = 7.8 Hz, 1H), 7.32-

7.27 (m, 3H), 7.12 (m, 3H), 7.02 (dd, J = 8.2, 1.1 Hz, 1H), 6.94 (d, J = 8.2 Hz, 1H) 6.60 

(s, 1H), 3.86 (s, 3H), 3.62 (s, 3H), 3.51 (d, J = 13.6 Hz, 1H), 3.42 (d, J = 13.6 Hz, 1H) 

2.02 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 169.4, 169.3, 144.4, 139.1, 133.0, 131.6, 

128.6, 127.4, 125.3, 121.5, 119.8, 110.9, 96.8, 65.2, 58.5, 54.5, 53.5, 53.2, 26.2. FT-IR 

(thin film, cm-1): 3056, 2982, 2952, 2842, 1739, 1610, 1448, 1257, 1165, 1094. HRMS 

calc'd for C22H21NO4 [M+]: 363.1471; found: 363.1466. 
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Dimethyl 9-(2-(tert-butyldimethylsilyloxy)ethyl)-3-ethynyl-3-

methyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1,1-dicarboxylate 

(1-54f).  

Following experimental procedure C, pyrroloindole 1-54f was 

prepared by dissolving N-alkylindoline 1-53f (198 mg, 0.377 mmol) 

and Mn(OAc)3 (506 mg, 1.88 mmol) in 8 mL of MeOH. The reaction was hated to 70 oC 

for 3 h. Compound1-54f (142 mg, 0.302 mmol, 80%) was obtained as a colourless oil. Rf 

= 0.57 (30% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 7.8 Hz, 

1H), 7.54 (d, J = 7.8 Hz, 1H), 7.22 m, 1H), 7.14 (m, 1H), 3.85 (dd, J = 7.0, 3.9 Hz, 2H), 

3.82 (s, 6H), 3.59 (d, J = 13.2 Hz, 1H), 3.40 (d, J = 13.2 Hz, 1H) 3.06 (dd, J = 7.0, 3.9 

Hz, 2H), 2.52 (s, 1H), 1.87 (s, 3H), 0.93 (s, 9H), 0.08 (s, 6H). 13C NMR (100 MHz, 

CDCl3): δ = 169.4, 169.0, 134.0, 133.2, 130.1, 121.8, 120.2, 119.6, 110.2, 107.3, 83.9, 

72.4, 63.2, 58.3, 54.6, 53.4, 53.3, 52.5, 28.2, 27.9. 26.0. 18.4. -5.2. FT-IR (thin film, cm-

1): 3279, 2954, 2930, 2856, 1742, 1453, 1434, 1253, 1152, 1090. HRMS calc'd for 

C26H35NO5Si [M+]: 469.2284; found: 469.2283. 

Dimethyl 9-(cyanomethyl)-3-ethynyl-3-methyl-2,3-dihydro-1H-

pyrrolo[1,2-a]indole-1,1-dicarboxylate  (1-54g). 

 Following experimental procedure C, pyrroloindole 1-54g was 

prepared by dissolving N-alkylindoline 1-53f (444 mg, 1.25 mmol) and Mn(OAc)3 (1675 

mg, 6.25 mmol) in 10 mL of MeOH. The reaction was hated to 70 oC for 3 h. Compound 

1-54f (150 mg, 0.428 mmol, 35%) was obtained as a yellow solid. Mp = 88-90 oC. Rf = 

0.31 (30% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3): δ = 7.70 (d, J = 7.8 Hz, 

1H), 7.60 (d, J = 8.2 Hz, 1H), 7.30 (m, 1H), 7.24 (m, 1H), 3.97 (d, J = 8.2 Hz, 2H), 3.88 

(d, 6H), 3.59 (d, J = 13.6 Hz, 1H), 3.47 (d, J = 13.6 Hz, 1H), 2.59 (s, 1H), 1.90 (s, 3H). 

13C NMR (100 MHz, CDCl3): δ = 168.7, 168.5, 134.8, 131.9, 131.1, 123.1, 120.9, 119.3, 

118.4, 110.9, 99.3, 83.8, 73.2, 58.7, 55.5, 54.2, 54.0, 51.6, 28.4, 13.3. FT-IR (thin film, 

cm-1): 3271, 2988, 2951, 1731, 1453, 1348, 1254, 1149, 1096, 745. HRMS calc'd for 

C20H18N2O4 [M+]: 350.1267; found: 350.1278. 
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Hydrostannylation of dimethyl 9-(2-(tert-butyldimethylsilyloxy)ethyl)-3-methyl-3-(2-

(tributylstannyl)vinyl)-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1,1-dicarboxylate (1-

89). 

 

To a solution of compound 1-54f (50 mg, 0.106 mmol, 1 equiv) in 5 mL of THF, 

PdCl2(PPh3)2 (3.72 mg, 0.005 mmol, 5 mol %) was added and the mixture was cooled to 

0 oC. Bu3SH (34 mg, 0.117 mmol, 1.1 equiv) was then added dropwise over a 5-minute 

period. The mixture was stirred at 0 oC for 10 minutes and then at room temperature for 

30 minutes. The crude reaction mixture was concentrated, pre-absorbed onto silica gel, 

and purified by column chromatography (EtOAc in hexanes). Compound 1-89 (68 mg, 

0.089 mmol, 85%) was obtained as a colourless oil. Rf = 0.77 (30% EtOAc in hexanes). 

1H NMR (400 MHz, CDCl3): δ =  7.64 (m, 1H), 7.22 (m, 1H), 7.08 (dd, J = 4.7, 4.3 Hz, 

2H),  6.18 (d, J = 19.5 Hz, 1H), 6.07 (d, J = 19.5 Hz, 1H), 3.87-3.82 (m, 2H),  3.81 (s, 

3H), 3.76 (s, 3h), 3.19 (s, 1H), 3.06 (dd, J = 6.6 Hz, 2H), 1.68 (s, 3H), 1.51-1.38 (m, 6H), 

1.30 (m, 6H), 0.93 (s, 9H),  0.90-0.85 (m, 15H), 0.07 (s, 6H). 13C NMR (100 MHz, 

CDCl3): δ = 169.9, 169.6, 150.1, 135.2, 132.9, 131.4, 131.3, 128.0, 121.3, 119.9, 118.9, 

110.5, 106.3, 102.8, 101.4, 64.3, 63.3, 58.5, 58.3, 53.2, 53.1, 52.1, 29.1, 29.0, 28.8, 28.3, 

37.3, 27.2, 26.0, 23.8, 18.5, 13.7, 13.6, 10.3, 9.5, -5.2. FT-IR (thin film, cm-1): 2954, 

2927, 2854, 1743, 1454, 1251, 1150, 1090. HRMS calc'd for C38H63NO5SiSn [M+]: 

761.3497; found: 761.3587. 
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Synthesis of dimethyl 9-(2-(tert-butyldimethylsilyloxy)ethyl)-3-methyl-3-(2-(1-tosyl-

1H-indol-2-yl)vinyl)-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1,1-dicarboxylate (1-91).  

 

To a solution of compound 1-89 (39 mg, 0.051 mmol, 1.1 equivs) in 5 mL of toluene 

were added Pd(PPh3)4 (1.76 mg, 0.001 mmol, 3 mol %) and 2-bromo-1-tosyl-1H-indole 

1-9041 (16 mg, 0.046 mmol, 1 equiv). The reaction mixture was heated to 110 oC for 24 

hours.  The crude reaction mixture was concentrated, pre-absorbed onto silica gel, and 

purified by column chromatography (EtOAc in hexanes). Compound 1-91 (20 mg, 0.026 

mmol, 58%) was obtained as a colourless oil. Rf = 0.31 (30% EtOAc in hexanes). 1H 

NMR (400 MHz, CDCl3): δ = 8.17 (d, J = 8.6 Hz, 1H), 7.71-7.69 (m 1H), 7.45 (d, 8.6 

Hz, 2H), 7.40 (d, J = 7.8 Hz, 1H), 7.37-7.35 (m, 1H), 7.30 (d, J = 8.2 Hz, 1H) 7.21 (d, J = 

7.8 Hz, 1H), 7.14-7.12 (m, 2H), 7.07 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 16.0 Hz, 1H), 6.66 

(s, 1H), 6.36 (d,  J = 16.0 Hz, 1H), 3.90 (t, J = 8.2 Hz, 2H) 3.85 (s, 3H), 3.74 (s, 3H), 3.40 

(d, J = 13.4 Hz, 1H), 3.27 (d, J = 13.4 Hz, 1H), 3.10 (t, J = 8.2 Hz, 2H), 2.31 (s, 3H), 1.94 

(s, 3H), 0.94 (s, 9H), 0.10 (s, 6H). 13C NMR (100 MHz, CDCl3): δ = 169.8, 169.6, 144.6, 

137.9, 137.3, 136.7, 135.5, 134.9, 133.1, 131.3, 129.6, 126.5, 124.7, 123.8, 121.7, 120.7, 

120.4, 120.1, 119.3, 114.9, 110.3 109.1, 106.8, 63.2, 62.6, 58.4, 53.4, 53.3, 52.2, 28.4, 

26.1, 24.3, 21.5, 18.5, -5.2. FT-IR (thin film, cm-1): 2954, 2929, 2856, 1740, 1597, 1451, 

1373, 1255, 1174, 1090. HRMS calc'd for C41H48N2O7SSi [M+]: 740.2951; found: 

740.2961. 
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Synthesis of methyl 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1-

carboxylate (1-92). 

 

In a microwave vial, pyrroloindole 1-54e (275 mg, 0.757 mmol, 1 equiv) was dissolve in 

DMF (8 mL), followed by the addition of LiCl (64 mg, 1.51 mmol, 2 equiv) and 

Me3NHCl (72 mg, 0.757 mmol, 1 equiv). The reaction mixture was placed in the 

microwave reactor and heated to 120 oC for 3 hours. The mixture was diluted with 15 mL 

of distilled water and extracted with EtOAc (3 x 20 mL). The organic layers were 

combined, washed once with brine, dried over MgSO4, and filtered. The filtrate was 

concentrated and purified by column chromatography. Compound 1-92 (169 mg, 0.554 

mmol, 74%) was obtained in a 1:1.3 mixture of diastereomers and as a yellow oil. Rf = 

0.58 (30% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) (mixture of 

diastereomers): δ = 7.64 (d, J = 7.6 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H) 7.37-7.31 (m, 2H) 

7.30-7.24 (m, 5H), 7.12-7.10 (m, 2H), 7.07-7.03 (m, 1H), 6.96 (d, J = 8.2 Hz, 1H), 6.92 

(dd, J = 7.8, 1.5 Hz, 2H), 6.74 (d, J = 8.2 Hz, 1H) 4.34 (t, J = 8.6 Hz, 1H), 4.17 (t, J = 7.4 

Hz, 1H), 3.83 (s, 3H),  3.74 (s, 3H) 3.19-3.11 (m, 2H), 2.96-2.90 (m, 2H), 2.16 (s, 3H), 

1.92 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 171.8, 171.6, 144.9, 144.1,140.8, 133.4, 

133.1, 132.0, 131.5, 128.7, 128.6, 127.4, 127.2, 125.7, 124.9, 121.0, 120.9, 120.8, 120.7, 

119.5, 119.4, 110.7, 94.7, 94.5, 65.8, 65.0, 52.5, 52.4, 49.7, 49.5, 41.9, 41.4, 26.6, 24.7. 

FT-IR (thin film, cm-1): 2981, 2951, 1740, 1683, 15557, 1449, 1199, 1167, 1029. HRMS 

calc'd for C20H19NO2 [M+]: 305.1416; found: 305.1413. 
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Synthesis of 3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indole-1-carbaldehyde 

(1-93). 

 

To a solution of pyrroloindole 1-92 (200 mg, 0.655 mmol, 1 equiv) in toluene chilled to -

78 °C was added a 1M solution of DIBAL-H (3.50 mL, 3.48 mmol, 5.3 equiv) dropwise 

for 20 minutes. The reaction mixture was stirred for 1 hour at which time the reaction 

flask was removed from the cold bath. Immediately after, the reaction mixture was 

quenched MeOH (1.5 mL) and the mixture was stirred for an additional 30 minutes. The 

reaction mixture was then diluted with 5% HCl (20 mL) and extracted with CH2Cl2 (20 

mL x 3). The combined organic layers were washed with an additional 5% HCl (20 mL), 

water (20 mL), and brine (20 mL) and dried with MgSO4. The crude reaction mixture 

was concentrated to give aldehyde 1-93 was obtained as a yellow foam (157 mg, 0.570 

mmol, 87%) and a 1:1.1 mixture of diastereomer. The crude product was used 

immediately without further purification. 1H NMR (400 MHz, CDCl3) (mixture of 

diastereomers): δ = 9.80 (d, J = 2.3 Hz, 1H), 9.60 (d, J = 2.7 Hz, 1H), 7.67 (m, 1H), 7.65 

(m, 1H), 7.34-7.26 (m, 6H), 7.24-717 (m, 2H), 7.12-7.02 (m, 4H), 7.09-7.05 (m, 2H), 

7.00-6.98 (m, 2H), 6.90 (d, J = 7.4 Hz, 1H), 6.46 (s, 1H), 4.16-4.11 (m, 1H), 4.09-4.04 

(m, 1H), 3.13 (dd, J = 2.7, 7.0 Hz, 1H), 3.08 (dd, J = 3.1, 7.0 Hz, 1H), 2.93 (dd, J = 8.9, 

13.2 Hz, 1H), 2.89 (dd, J = 6.3, 10.5 Hz, 1H), 2.09 (s, 3H), 2.01 (s, 3H). 
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Experimental data for by product 3-methyl-3-phenyl-2,3-dihydro-

1H-pyrrolo[1,2-a]indol-1-one (1-96). 1H NMR (400 MHz, CDCl3):  

7.82 (d, J = 7.4 Hz, 1H), 7.36-7.31 (m, 3H), 7.22-7.17 (m, 2H), 7.5-7.12 (m, 2H), 7.12 (s, 

1H), 3.98 (d, 8.2 Hz, 1H), 3.34 (s, 2H), 2.14 (s, 3H). 13C NMR (100 MHz, CDCl3):  

δ = 191.9, 143.6, 136.4, 134.0, 132.6, 129.0, 127.8, 125.3, 124.9, 124.4, 121.4, 112.6, 99.

2, 62.7, 58.9, 26.3. HRMS calc'd for C18H15NO [M+]: 261.1154; found: 261.1150. 

Synthesis of 1-(methoxycarbonyl)-2-methyl-2-phenylcyclopropane-1-carboxylic acid 

(1-109). 

 

 To a solution of cyclopropane 1-52e (300 mg, 1.16 mmol, 1 equiv) in MeOH (1.5 mL), 

1.7 M NaOH (1.5 mL, 2 equiv) was added and was stirred at room temperature for 8 

hours. The reaction mixture was then diluted with EtOAc and water to separate the 

layers. The quelus layer was acidified with 5% HCl to reach a PH 2, and then extracted 

with EtOAc (8 mL x 3). The combined organic layers were washed with brine and dried 

with MgSO4. The crude reaction mixture was concentrated to give cyclopropane 1-109 as 

a colourless oil (272 mg, 1.16 mmol, quantitative yield. 1H NMR (400 MHz, 

CDCl3): δ = 7.36-7.32 (m, 2H), 7.28-7.24 (m, 3H), 3.08 (s, 3H), 2.49 (d, J = 5.2 Hz, 1H), 

2.24 (d, J = 5.2 Hz, 1H), 1.66 (s, 3H). 13C NMR (100 MHz, CDCl3): δ = 174.0, 167.9, 

128.8, 128.5, 127.8, 127.5, 52.5, 24.6, 22.4. 

Synthesis of methyl 1-isobutyryl-2-methyl-2-phenylcyclopropane-1-carboxylate (1-

104). 
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To a solution of cyclopropane 1-112 (250 mg, 0.968, 1 equiv) in THF (5 mL) and water 

(5 mL) was added sodium acetate (397 mg, 4.84 mmol, 5 equiv) and p-toluenesulfonyl-

hydrazide (631 mg, 3.38 mmol, 3.5 equiv). The reaction mixture was heated to 70 °C for 

18 hours. The reaction was cooled to room temperature and the THF was removed under 

reduced pressure. The resulting slurry was extracted with Et2O (10 mL x 3), and the 

combined organic layers were washed with water (30 mL), brine (30 mL) and dried with 

MgSO4. The crude reaction mixture was concentrated, pre-absorbed onto silica gel, and 

purified by column chromatography (EtOAc in Hexanes) to give 1-104 as a colourless oil 

(70 mg, 0.345 mmol, 36%) and a 1:1 mixture of diastereomers. Rf = 0.60 (30% EtOAc in 

hexanes). 1H NMR (400 MHz, CDCl3) (mixture of diastereomers): δ =  7.27-7.25 (m, 

3H), 7.27-7.22 (m, 4H), 7.21-7.14 (m, 3H), 3.83 (s, 3H), 3.05 (s, 3H), 2.98-2.92 (m, 1H), 

2.32 (d, J = 5.1 Hz, 1H), 2.19 (d,  J = 5.5 Hz, 1H), 1.94-1.88 (m, 1H), 1.64 (d, J = 5.1 Hz, 

1H), 1.63 (s, 3H), 1.48 (s, 3H), 1.09 (d, J = 6.6 Hz, 3H), 0.95 (d, J = 5.5 Hz, 1H), 0.90 (d, 

J = 6.6 Hz, 3H), 0.83 (d, J = 6.7 Hz, 3H), 0.79 (d, J = 6.6 Hz, 3H). 

Synthesis of methyl 1-isobutyryl-3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-

a]indole-1-carboxylate (1-113). 

 

Following experimental procedure B (Method B), cyclopropane 1-104 (90 mg, 0.345 

mmol), Yb(OTf)3 (22 mg, 0.035 mmol), and indoline 1-35a (82 mg, 0.690 mmol) were 

dissolved in 3 mL toluene. The reaction was hated to 100 oC for 6 h. The mixture was 

then cooled to room temperature and diluted with 1M HCl (10 mL). The organic layer 

was collected and the aqueous layer was extracted with EtOAc (2 x 10 mL). The organic 

layers were combined, washed once with brine, dried over MgSO4, and filtered. The 

filtrate was concentrated and purified by column chromatography (EtOAc in Hexanes). 

The N-alkylindoline was as a brown foam (Rf = 0.68 in 30% EtOAc in hexanes). and was 

used immediately in the next step. The resulting N-alkylindoline was dissolved in MeOH 
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and was added Mn(OAc)3 (5 equivs). The reaction mixture was heated to 70 oC for 6 

hours (monitored by TLC). The crude reaction mixture was concentrated, pre-absorbed 

onto silica gel, and purified by column chromatography (EtOAc in Hexanes). 

Pyrroloindole 1-113 was obtained as a yellow foam (20 mg, 0.053 mmol, 23%) 1:1.6 

mixture of diastereomers. Rf = 0.59 in 30% EtOAc in hexanes. 1H NMR (400 MHz, 

CDCl3) (mixture of diastereomers): 7.66 (m, 2H), 7.31-7.25 (m, 7H), 7.15-7.11 (m, 3H), 

7.09-7.05 (m, 3H), 7.01 (m, 2H), 6.84 (d, J = 8.2 Hz, 1H), 6.64 (s, 1H), 6.62 (s, 1H), 3.83 

(s, 3H), 3.67 (s, 3H), 3.52 (d, J = 14.1 Hz, 1H), 3.46 (d, J = 13.5 Hz, 1H), 3.38 (d, J  = 

13.5 Hz, 1H) 3.38-3.33 (m, 1H), 3.29 (d, J = 14.1 Hz, 1H), 3.10-3.14 (m, 1H), 1.99 (s, 

3H), 1.98 (s, 3H), 1.20 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.5 Hz, 3H), 1.05 (d, J = 6.5  Hz, 

3H), 0.77 (d, J = 6.5 Hz, 3H). 

Synthesis of 2-methyl-1-(3-methyl-3-phenyl-2,3-dihydro-1H-pyrrolo[1,2-a]indol-1-

yl)propan-1-one (1-114). 

 

In a microwave vial, pyrroloindole 1-113 (80 mg, 0.213 mmol, 1 equiv) was dissolve in 

DMF (5 mL), followed by the addition of LiCl (18 mg, 0.426 mmol, 2 equiv) and NEt3-

HCl (20 mg, 0.213 mmol, 1 equiv). The reaction mixture was placed in the microwave 

reactor and heated to 120 oC for 3 hours. The mixture was diluted with 15 mL of distilled 

water and extracted with EtOAc (3 x 15 mL). The organic layers were combined, washed 

once with brine, dried over MgSO4, and filtered. The filtrate was concentrated and 

purified by column chromatography. Compound 1-114 (28 mg, 0.088 mmol, 35%) was 

obtained as a yellow oil in a 1:2.25 mixture of diastereomers. Rf = 0.58 (30% EtOAc in 

hexanes).  1H NMR (400 MHz, CDCl3) (mixture of diastereomers): 7.62-7.59 (m, 2H), 

7.34-7.32 (m, 2H), 7.30-7.27 (m, 4H), 7.25-7.23 (m, 2H), 7.10-7.06 (m, 2H), 7.04-7.01 

(m, 2H), 6.98-6.96 (m, 1H), 6.95-6.93 (m, 2H), 6.78 (d, J = 8.2 Hz, 1H), 6.38 (s, 1H), 

6.36 (s, 1H),  4.46 (t, J = 8.2 Hz, 1H), 4.37 (t, J = 8.2 Hz, 1H), 3.23-3.12 (m, 4H), 2.82-



www.manaraa.com

 

57 

 

2.77 (m, 2H), 2.06 (s, 3H), 1.92 (s, 3H), 1.23 (d, J = 7.0 Hz, 3H), 1.22 (d, J = 7.0 Hz, 

3H), 1.18 (d, J = 6.5 Hz, 3H), 1.09 (d, J = 6.5 Hz, 3H). 
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Chapter 2: Annulation Reactions of Donor Acceptor 

Cyclopropanes with Vinyl Azide and 2H-azirine 

2 Chapter introduction 

Chapter two describes the annulation reaction of DA cyclopropanes with vinyl azide or 

2H-azirine for the formation of 1-azabicyclo[3.1.0]hexane-4,4-dicarboxylates. 

Throughout the chapter, a general description of annulation reactions between DA 

cyclopropanes with dipolarophiles to give heterocycles is described. The work presented 

in this chapter was done in collaboration with Lauren C. Irwin, who synthesized 

cyclopropanes 2-99c-f and 2-99h. Reaction optimization, reaction scope, mechanistic 

studies, and crystal suitable for x-ray diffraction studies were developed independently. 

The results presented in Section 2.4 have been published in a peer review journal and 

reproduced in part with permission from Curiel Tejeda, J.E.; Irwin, L.C.; Kerr, M.A. Org. 

Lett. 2016, 18, 4738-4741. Copyright © 2016 American Chemical Society. 

2.1 Annulations of Donor Acceptor cyclopropanes 

In Chapter 1, it was shown that when a DA cyclopropane reacts with a nucleophile, a 

homo-Michael product is formed. If a nucleophile and an electrophile are tethered 

together (2-2) and react with a DA cyclopropane (2-1), a ring is formed as the product (2-

4, Figure 2-1). The new ring is a result of a cycloaddition or an annulation reaction which 

are characterized by two components coming together to form two new σ-bonds and 

make a ring.1 A reaction is classified as a cycloaddition reaction when the ring product is 

formed via a concerted mechanism, while annulation reactions involve a step-wise 

mechanism. Throughout the chapter, the reactions of DA cyclopropanes for ring 

formation will be referred to as annulation reactions, as many of their mechanisms are 

step-wise, rather than concerted. The annulation reactions of DA cyclopropanes are 

postulated to follow an intermediate (2-3) where the charge separation is enhanced by a 

Lewis acid, heat, or pressure. The majority of the annulation reactions of activated DA 

cyclopropanes with dipolarophiles, involve the formation of heterocycles; this is due to 

the initial ring opening event being more facile with heteroatom based nucleophilic 
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moieties.2a-b,d-e However, there have been some cases where all-carbon partners are used 

resulting in the formation of carbocycles.2c Annulation reactions often provide high atom 

economy, and excellent regio- and stereoselectivities observed in the products. In this 

chapter, a few examples of cycloaddition/annulation reactions of DA cyclopropanes with 

varying partners will be discussed as there are many examples in the literature.2 

AD

Nu E Nu E

D A

Nu E

δδδδ+ δδδδ-

annulat ion/cycloaddition
product

AD

Lewis acid , heat, or
pressure

2-1

2-2

2-3 2-4

 

Figure 2-1. Annulation reaction of DA cyclopropanes. 

 Annulation Reactions of DA Cyclopropanes to form 
Carbocycles 

In 2009, Sapeta and Kerr reported the Lewis acid catalyzed [3+3] hexannulation of DA 

cyclopropane 2-5 with 2-(chloromethyl)-3-trimethyl-silyl-1-propane (2-8) to afford exo-

methylenecyclohexane 2-7 (Scheme 2-1).3 The methodology was inspired by the work of 

Trost and Chan in which Pd-trimethylenemethane (Pd-TMM) was used as a 3-carbon 

synthon in a [3 + 2] cycloaddition with olefins.4  Since DA cyclopropanes are known to 

behave similar to alkenes2d,e, attempts towards the one-pot annulation of  DA 

cyclopropane 2-5 with TMM 2-6 failed with various Pd(0) sources. It was later found that 

the reaction between DA cyclopropane 2-5 and 2-(chloromethyl)-3-trimethyl-silyl-1-

propane (2-8), in the presence of TiCl4, gave the ring open product 2-9 in yields ranging 

from 62-92%. Treatment of compound 2-9 with NaH gave the desired exo-

methylenecyclohexane product 2-7, in 75-97% yield. Although a two-step protocol was 

accomplished, attemps to a one-pot procedure by screening of several organic and 

inorganic additives, Ag(0) sources, and other bases, failed. Substrate scope for the 

reaction was limited to the use of aromatic, heteroaromatic, vinyl, and spiro-fused 

cyclopropanes and the utility of the reaction was displayed in the synthesis of the core of 

the natural product tronocarpine 2-10. 
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Scheme 2-1. Sapeta and Kerr's synthesis of exo-methylenecyclohexanes. 

Later in 2011, Kerr and co-workers developed a tandem cyclopropane ring 

opening/Conia-ene reaction, catalyzed by Zn(NTf2)2, reaction to give the cyclohexane 

ring of 2-13 (Scheme 2-2).5 The scope of the reaction was investigated and styrenyl, 

vinyl, heteroaryl, and electron rich and electron poor aryl substituted cyclopropanes 

afforded 2-11 in yields ranging from 61-90%. The reaction was also limited to the use of 

terminal alkynes as any internal alkyne inhibited the Conia-ene reaction and only ring 

open product was isolated.  

 

Scheme 2-2. Kerr and co-workers’ tandem ring opening/Conia-ene annulation reaction to 

form tetrahydrocarbazole. 

In 2015, an efficient [4+3] annulation reaction between dienosilyl ether 2-14 and DA 

cyclopropane 2-15 in the presence of a Cu(ClO4)2•6H2O to give a variety of cycloheptene 

or [n,5,0]carbobicycle 2-18 in a 58-96% yield (Scheme 2-3).6 An asymmetric version of 

the reaction was also developed by employing a chiral Cy-TOX ligand (2-16), which 

provided an innovative approach accessing optically active cycloheptene or 
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[n,5,0]carbobicycle 2-18 in excellent ee (88-98%). Mechanistic studies showed that the 

reaction involves a stepwise pathway involving an unusual ring opening of a 5-membered 

intermediate (2-17), formed by a [3+2] annulation, followed by an intramolecular 

cyclization to afford the thermodynamically stable [4+3] annulation product. 

 

Scheme 2-3. Tang and co-workers’ [4+3] annulation of DA cyclopropanes with dienes. 

Also in 2015, Tomilov and co-workers published a unique process where DA 

cyclopropane 2-19 was used as a source of a formal 1,2-dipole in a GaCl3 mediated [4+2] 

annulation reaction with alkene 2-22 to access tetralin 2-24 (Scheme 2-4).7 To form 1,2-

dipole (2-21), 1,3-dipole 2-20 which is formed by the typical bond polarization of DA 

cyclopropane 2-19. A 1,2-hydride shift occurs at the benzyl position and is promoted by 

the presence of anhydrous GaCl3.8,9 The addition of alkene 2-22 to the 1,2-dipolar 

gallium complex (2-21) results in intermediate 2-23, which then undergoes an 

intramolecular electrophilic aromatic substitution to give tetralin 2-24 in yields up to 

90%. The reaction was tolerable of a diverse number of unsaturated compounds, with 

both aryl and alkyl substitutes about the double bond, as well as DA cyclopropanes with 

various substitution patterns on the aromatic ring.  
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Scheme 2-4. Tomilov and co-workers’ GaCl3 mediated [4+2] annulation of DA 

cyclopropanes with alkenes. 

 Annulation Reactions of DA Cyclopropanes to form 
Heterocycles 

 Annulations Reactions with Nitrones  

The first example of a dipolar [3+2] annulation reaction between DA cyclopropanes and 

nitrones was published by Young and Kerr in 2003.10 Tetrahydro-1,2-oxazine 2-25 was 

synthesized from the reaction between cyclopropane 2-26, nitrone 2-27, and catalytic 

amounts of Yb(OTf)3 (5 mol%) (Scheme 2-5). The reaction tolerated a wide range of 

nitrones; N-tolyl protected nitrones were significantly more reactive than their N-Me 

protected counterpart, and proceeded to give products in higher yields (73-96% and 50-

84%), respectively. Cyclopropanes with a phenyl- or styryl- substituent greatly reduced 

the reaction times, and cycloadducts were obtained in yields ranging from 74-95%. 

Lower yields were obtained for vinyl substituted cyclopropanes because of a competing 

polymerization side reaction. In all cases of the [3+2] annulation, the sole regioisomer 

isolated had the oxygen atom of the nitrone proximal to the diester moiety of the 

cyclopropane. A single diastereomer was also formed, with substituents at the C3 and C6 

cis to each other. In 2004, Young and Kerr expanded on the methodology by showing a 

three-component process in which hydroxyalamine 2-28 reacted with aldehyde 2-29 to 

give the nitrone in situ to yield a diverse array of tetrahydro-1,2-oxazines 2-25 in good 

yields (66-96%) and diastereoselectivity (>95%) (Scheme 2-5).11  
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Scheme 2-5. Kerr group synthesis of tetrahydro-1,2-oxazines. 

More recently, Ioffe and co-workers developed the first [3+3] annulation of nitronate 2-

30 with DA cyclopropane 2-31 to access previously unknown bicyclic nitrosoacetal 2-32 

(Scheme 2-6).12 The reaction proceeded under catalytic Yb(OTf)3 (5 mol%) conditions to 

give bicycle2-32 in yields ranging from 61-92%. 

O
N

O

R1

R2

R3

R4

R5
CO2Me

CO2Me+
Yb(OTf) 3 (5 mol%)

CH2Cl2, 4Å MS
RT

O
N

OR4
R3

R5

CO2Me

CO2Me
H

R1

R2

61-92%2-30 2-31 2-32  

Scheme 2-6. Ioffe and co-workers' synthesis of bicyclic nitrosoacetal from DA 

cyclopropanes. 

 Annulation Reactions with Aromatic Azomethine Imines 

Another 1,3-dipole used as nucleophiles in the annulation of DA cyclopropanes are 

azomethine imines. In 2008, Charette and co-workers described the formation of tricyclic 

dihydroquinoline 2-35 in the first annulation reaction of aromatic azomethine imine 2-33 

with DA cyclopropane 2-34 (Scheme 2-7).13 Catalyst screening showed that Sc(OTf)3, 

Mg(ClO4)2, and Ni(ClO4)2 were suitable catalysts for the reaction, but of the three, 

Ni(ClO4)2 was found to be the best. A benzoyl protected quinolinium ylide showed to be 

the most effective in the annulation reaction, when compared to its pivaloyl- or triflyl- 

protected counterparts. Substitution on the benzoyl protecting group showed that the 

placement of an EWG gave tricyclic dihydroquinoline 2-35 in an 84% yield (p-CF3Bz), 

while an EDG group gave the annulation product in a lower yield of 54% (p-OMeBz). 

The scope of the reaction, with respect to the cyclopropane, showed that electron rich 

substituted DA cyclopropanes gave cycloadducts in moderate yields (32-87%) and dr up 



www.manaraa.com

 

68 

 

to 6.6:1. Electron poor substituents on the cyclopropanes, such as the p-NO2 aryl 

substituted, gave the product in lower yields, 11%, but still a good dr of 5.9:1. A 

stereochemical analysis of the reaction led to a proposed stepwise mechanism that 

consists of a nucleophilic ring opening of the DA cyclopropane (2-36) followed by a 

diastereoselective ring-closing reaction (2-37) to yield tricyclic dihydroquinoline 2-35. 

 

Scheme 2-7. Charette and co-workers’ annulation reaction of DA cyclopropane and 

aromatic azomethine imine. 

Later, in 2013, Tang’s group published a highly enantioselective [3+3] annulation 

reaction of isoquinoline azomethine imine 2-38 with DA cyclopropane 2-39 catalyzed by 

a In-TOX 2-41/Ni(ClO4)2 system (Scheme 2-8).14 The reaction provided the formation of 

6,6,6-tricyclic dihydroisoquinoline 2-40 in yields up to 99% with good diastereo- and 

enantioselectivity (>20:1 dr and up to 98% ee).   
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Scheme 2-8. Tang and co-workers’ synthesis of tricyclic dihydroisoquinolines. 

 Annulation Reactions with Nitriles 

In 2003, Yu and Pagenkopf published the first highly stereoselective [3+2] annulation of 

glycal derived DA cyclopropane 2-43 with nitrile 2-43 to afford dihydropyrroles 2-44, in 

the presence of Me3SiOTf (Scheme 2-9).15,16 The reaction worked well with aliphatic 

nitriles (such as acetonitrile and pivalonitrile). Aromatic, and α, β-unsaturated nitriles 

also underwent efficient cyclization to afford dihydropyrrole 2-44 in a 43-96% yield and 

as a single diastereomer with high stereoselectivity.  

O

R2Si
O

O

O
O CH2Cl2, RT

O

R2Si
O

O N

O O

R1

2-42 2-44
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R1CN
2-43

43-96%

 

Scheme 2-9. Yu and Pagenkopf’s [3+2] annulation of DA cyclopropanes with nitriles. 

Furthermore, Srinivasan and co-workers published a SnCl4 promoted [3+2] annulation 

between activated DA cyclopropane 2-45 and nitrile 2-46 (Scheme 2-10).17 The reaction 

proceeded well with both alkyl and aryl nitriles, which underwent cyclization to give 1-

pyrrolines 2-48 in a 48-90% yield. Srinivasan and coworkers postulated that the reaction 

proceeded via a 1,5-dipole (2-47) with C1 and C3 substituents positioned in a cis-

orientation, despite steric crowding, nucleophilic attack ensued by the malonate 

carbanion to the nitrile carbon to form 1-pyrrolidine 2-48. 
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Scheme 2-10. Srinivasan’s SnCl4 catalyzed [3+2] annulation reaction of DA 

cyclopropanes and nitriles. 

 Annulation Reactions with Aldehydes  

Pohlhaus and Johnson published a protocol where DA cyclopropane 2-49 and aldehyde 

2-50 reacted in the presence of a Lewis acid to give 2,5-cis-tetrahydrofuran 2-52 (Scheme 

2-11).18 Initial catalyst screening showed that strong Lewis acids such as TiCl4 and AlCl3 

gave significant decomposition of the DA cyclopropane, while milder Lewis acids like 

SnCl2, ZnCl2, Mg(OTf)2 and La(OTf)3 exhibited no reactivity. While Cu(OTf)3, 

Sc(OTf)3, and SnCl4 gave clean cycloadducts with low cis:trans diastereoselectivity, 

59:1, 3.1:1, and 3.1:1, respectively. 

H
CO2Me

CO2Me
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+
R1 H

O O

E

E
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82-100%

dr ≤≤≤≤ 100:1

2-49 2-50 2-51 2-52  

Scheme 2-11. Pohlhaus and Johnson’s synthesis of 2,5-cis-tetrahydrofurans. 

The catalyst of choice was found to be Sn(OTf)2 which showed excellent conversion to 

the 2,5-cis-THF 2-52 in excellent yields (82-100%) and dr ≤ 100:1 (Scheme 2-11). 

Substrate scope of the aldehydes showed the reaction proceeded smoothly in the presence 

of electron rich, electron neutral, electron poor, and heterocyclic substituted aldehydes. 

Pohlhaus and Johnson hypothesized that the stereochemical outcome of the product is 

due to the placement of the larger group of the aldehyde in a pseudo-equatorial position 

(2-51) which is more sterically favoured, leading to 2,5-cis-THF 2-52. 
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 Annulations with Aldimines 

Like Pohlhaus and Johnson’s work, Carson and Kerr showed a diastereoselective 

synthesis of 2,5-cis-pyrrolidine 2-58 from the reaction of aldimine 2-55 and DA 

cyclopropane 2-56, under catalytic Yb(OTf)3 conditions (Scheme 2-12).19 During the 

initial trials, the aldimines were prepared and isolated prior to the reaction, and although 

isolated aldimines worked well, aldimines generated in situ were found to be more 

efficient as fewer side products and higher yields were obtained. 
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H
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H
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Scheme 2-12. Carson and Kerr' synthesis of 2,5-cis-pyrrolidines. 

In the one-pot reaction, the Yb(OTf)3 catalyst and DA cyclopropane 2-56 had to be added 

after the formation of aldimine 2-55, to avoid either the amine (2-53) or the aldehyde (2-

54) from reacting with the DA cyclopropane (Scheme 2-12). The scope of the reaction 

showed that primary alkylamines and primary anilines were well suited for the reaction; 

however, the scope of the aldehydes employed was limited to aryl or heteroaryl 

substituents. Like Pohlhaus and Johnson’s work, the proposed transition state (2-57) for 

the reaction shows the larger groups of the aldimine in a pseudo-equatorial position, 

which gives the observed 2,5-cis-pyrrolidine 2-58. 
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2.2 Project Goal 

To expand the work of Carson and Kerr involving the annulation of DA cyclopropanes 

with aldimines, it was postulated that 2H-azirine 2-59 could react with cyclopropane 2-60 

in the presence of a Lewis acid to form pyrrolidine 2-61, with an aziridine imbedded in 

the ring structure (Scheme 2-13). The motivation for this work is also based on the 

potentially interesting transformations of the adducts via aziridine ring opening by 

quaternization followed by a Krapcho decarboxylation of 2-62 to yield piperidine 2-63. 
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Scheme 2-13. Proposed reaction of DA cyclopropanes with 2H-azirine. 

2.3 The Chemistry of 2H-Azirines and Vinyl Azides  

 Synthesis and Reactivity of 2H-azirines  

2H-Azirines (2-66, Scheme 2-14) are compounds with a three-membered heterocycle, 

consisting of one nitrogen and two carbon atoms.20 2H-azirines are commonly 

synthesized by the thermal and/or photochemical treatment of vinyl azides  

(2-64) and there are two proposed mechanisms for the formation of 2H-azirines (Scheme 

2-14).21,22,23 The first accepted mechanism (A) involves the concerted cyclization-

elimination of N2 gas assisted by the π-bond (2-65) to form 2H-azirine 2-66; the second 

accepted mechanism (B) involves the participation of a vinylnitrene intermediate 2-67 for 

the formation of 2H-azirine 2-64.24  The formation of 2H-azirines by thermolysis of vinyl 

azides is highly dependent on the structure of the vinyl azide. Azides, where R1 = aryl, 
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alkyl, alkoxy, amine, or carboxylic groups often give stable azirines, while hydrogen or 

carbonyl substitution leads to nitriles or other heterocyclic products.20  
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Scheme 2-14. Synthesis of 2H-azirines from vinyl azides. 

The chemical reactivity of 2H-azirines is mostly a consequence of their ring strain (48 

kcal/mol), reactive π-bond, and their ability to undergo regioselectivity ring cleavage.20,25 

2H-azirines are not only capable of acting as nucleophiles and electrophiles in organic 

reaction, but they can also act as dienophiles and dipolarophiles in cycloaddition 

reactions.26 

 Reactions of 2H-azirines  

The synthetic utility of 2H-azirines has led them to be useful precursors in the synthesis 

of a variety of nitrogen-containing heterocyclic systems such as indoles,27 pyrroles,28 

pyridines,29 oxazoles,30 pyrazines,31 and many others.32 In 2001, Somfai’s group 

published a protocol describing the Lewis acid catalyzed hetero Diels-Alder reaction of 

2H-azirine 2-68 with Danishefsky’s diene (2-69) or  cyclopentadiene (2-71) (Scheme 

2-15).33 The reaction of 2H-azirine 2-68 with Danishefsky’s diene (2-69) gave the endo-

cycloadduct 2-70 in a 55% yield using 30 mol% of either ZnCl2, YbCl3, CuCl2. The 

reaction of 2H-azirine 2-68 with cyclopentadiene (2-71), also gave the endo-cycloadduct 

product 2-72 in a 45% yield in the presence of catalytic YbCl3. 
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Scheme 2-15. Somafi’s hetero-Diels alder reactions with 2H-azirine. 

Buji and co-workers reported a transition-metal-free and highly selective synthesis of 

either N-unsubstituted or N-arylindole, 2-75 and 2-76, respectively, by reacting aryne 

precursor 2-74 and 2H-azirine 2-723 in the presence of 18-crown-6 and potassium 

fluoride (Scheme 2-16).34 During preliminary studies, Buji and co-workers found that 

product selectivity was highly dependent on temperature. When the reaction was 

performed in THF cooled to -10 °C, N-arylindole 2-76 was formed in a 41-95% yield. On 

the other hand, when the same reaction was performed in THF heated to 60 °C, the aryne, 

generated from 2-74, smoothly insert into the 2H-azirine 2-73 to form 2,3-diarylindole   

2-75 in a 40-83% yield.  

 

 

Scheme 2-16. Buji and co-workers synthesis of N-unsubstituted or N-arylindoles. 

In 2016, Li and co-workers published a ruthenium-catalyzed intermolecular [3+2] 

annulation reaction between 2H-azirine 2-77 and activated alkyne 2-78 to afford 

polysubstituted pyrrole 2-60 (Scheme 2-17).35 The scope of the reaction with respect to 

2H-azirine (2-77) was well tolerated for alkyl, aryl and heteroatom substituents. The 

reaction also proceeded smoothly with ester- and ketone-derived alkynes; however, when 

the alkyne was substituted with groups such as carboxylic acids, nitriles, and amides 
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pyrrole 2-60 was not formed. The postulated reaction mechanism features a C-N bond 

cleavage of the 2H-azirine by the ruthenium catalyst to give a azaruthenacyclobutene 

intermediate 2-79 for the generation of desired products and specific selectivity of the 

pyrroles. 
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Scheme 2-17. Li and co-workers’ ruthenium-catalyzed [3+2] annulation reaction of 2H-

azirines and alkynes. 

2.4 Results and Discussion 

 Initial results 

To begin our investigation on the reaction of  DA cyclopropanes with 2H-azirines, we 

decided to use readily available, and highly studied,23 3-phenyl-2H-azirine (2-81), and 

dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (2-82) since the DA cyclopropane is 

prepared from inexpensive starting materials and has been used in annulation reactions 

with nitrones, azomethine imines, aldehydes, and iminines.2 We envisioned that the 

reaction could be formed via  nucleophilic ring opening of DA cyclopropane 2-82 by 2H-

azirine to give intermediate  2-83, which would then form azabicycle 2-84 via a 

Mannich-type ring closure (Scheme 2-18). 
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Scheme 2-18. Initial studies of the reaction between 2H-azirine and DA cyclopropane 

towards the synthesis of azabicycle 2-84. 
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At first, Carson and Kerr’s previously defined conditions were tested, which involved 

dissolving DA cyclopropane 2-82, 2H-azirne 2-81, and catalytic Yb(OTf)3 (10 mol%) in 

toluene heated to 110 °C, but this failed to yield any appreciable amount of a compound 

resembling 2-84. A brief survey of commonly used Lewis acids such as Sc(OTf)3, 

Dy(OTf)3, and AlCl3 also failed to give desirable results. A screening of solvents, such as 

benzene and CH2Cl2, at various temperatures (room temperature, 40, 80, 100 °C) did not 

change the outcome of the reaction. 

After much frustration at what seemed to be a straightforward extension of Carson and 

Kerr’s work, to instead change the course of our study and investigate the  reaction of (1-

azidovinyl)benzene (2-85) with dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (2-82), 

since vinyl azides are precursors to 2H-azirines, and have been used as 1,3-dipoles in 

annulation reactions.23,36 The potential result of the reaction is outlined on Scheme 2-19. 

Under Lewis acidic conditions, attack by the nitrogen anion of the vinyl azide 2-85 would 

yield intermediate 2-87, which may undergo a formal SN’ attack with loss of nitrogen gas 

resulting in dehydropiperidine 2-86. 

 

Scheme 2-19. Proposed reaction of (1-azidovinyl)benzene with dimethyl 2-

phenylcyclopropane-1,1-dicarboxylate. 

Again, dimethyl 2-phenylcyclopropane-1,1-dicarboxylate (2-82) was used due to its 

availability, and along with vinyl azide 2-85, and a catalytic amount of Yb(OTf)3 (5 

mol%) were dissolved in toluene heated to 110 °C. To our enjoyment, we obtained what 

appeared to be 2-86 in a 26% yield; the reaction also showed that a proof of principle was 

achieved and we had high hopes that the yields could be improved. Although the 1H 
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NMR spectrum, at first glance, looked consistent with 2-86, several aspects of the data 

soon became worrisome. We noticed that the germinal coupling on the 1H NMR of the 

methylene carbon (a), and the imine resonance in the 13C NMR spectrum, were missing. 

In addition, the protons on carbons labelled a and b could not be connect by HMBC. 

Upon closer inspection of the 1H NMR, 13C NMR, as well as COSY, HSQC, HMBC, it 

was determined that the product was not 2-86 but in fact 2-84, the azabicycle we initially 

hoped to obtain from the reaction with DA cyclopropane and 2H-azirine (Scheme 2-20).  

 

Scheme 2-20. Discovery of dimethyl 2,5-diphenyl-1-azabicyclo[3.1.0]hexane-4,4-

dicarboxylate (2-84). 

A possible mechanistic explanation for the formation of azabicycle 2-84 is shown in 

Scheme 2-21Scheme 2-19. Formation of compound 2-84 involves a nucleophilic attack 

by vinyl azide 2-85 to open DA cyclopropane 2-82 to yield intermediate x. Upon loss of 

nitrogen gas, stable imminium ion intermediate (x) is formed and subsequent Mannich-

type ring closure, gives azabicycle 2-84. 

 

Scheme 2-21. Possible reaction mechanism for the formation of compound 2-84. 
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 Reaction Optimization 

With compound 2-84 characterized, efforts were undertaken to optimize the reaction 

conditions for the formation of the azabicycle. The major obstacle that we had to 

overcome was the tendency of vinyl azide 2-85 to dimerize (2-89, Scheme 2-22). 

Attempts to suppress dimerization by changing solvents (CH2Cl2, benzene or toluene), 

temperature, and catalyst loading, were unsuccessful. Attempting to slowly add the vinyl 

azide via syringe pump, to lower its concentration, also failed to improve the yields. 

Catalysts screened during reaction optimization included Yb(OTf)3, Sc(OTf)3, AlCl3, and 

Dy(OTf)3, and it was found that Dy(OTf)3 was the most suitable catalyst for the reaction 

as it minimized dimerization of the vinyl azide. 
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Scheme 2-22. Formation of 2-84 and dimerization product 2-89. 

Despite optimization to the best of our abilities, dimerization persisted and the maximum 

yield of azabicycle 2-90 was only 30% (Scheme 2-22).  It was not until later that we 

became familiar with the work of Professor Jéröme Waser37b,c and his use of DA 

cyclopropanes bearing trifluoroethyl ester in place of the common methyl esters37, that 

the fate of the project began to change. By changing the methyl esters to fluoroethyl 

ester, the cyclopropane becomes more electrophilic due to the enhanced electron 

withdrawing effect of the fluoroesters, thus increasing the susceptibility of the 

cyclopropane to undergo ring opening when exposed to a Lewis acid. When the reaction 

between (1-azidovinyl) benzene (2-85) and bis(2,2,2-trifluoroethyl) 2-

phenylcyclopropane-1,1-dicarboxylate (2-90a) were reacted under catalytic Dy(OTf)3 (10 
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mol%) in toluene and heated to 110 °C, azabicycle 2-91a was obtained in a significantly 

higher yield of 55%, with little dimerization product 2-89 (Scheme 2-23). We were 

delighted with the outcome of the reaction, so we decided to explore the scope. 
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N3 N
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Ph CO2CH2CF3
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2-85 2-90a 2-91a
55%

 

Scheme 2-23. Reaction of vinyl azide 2-85 with DA cyclopropane 2-90a bearing 

trifluoroethyl esters. 

 Reaction Scope 

Having developed a new efficient set of conditions to favour the annulation reaction for 

the formation of azabicycle 2-91a, the scope of the reaction was investigated by varying 

the substituents on DA cyclopropane 2-90. The results are shown in Scheme 2-24.  
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Scheme 2-24. Reaction scope for the annulation reaction of vinyl azide 2-85 and DA 

cyclopropanes 2-90a-j to give azabicycles 2-91a-j. 

Several observations are worthy of note. First, the optimized conditions worked 

reasonably well, producing adducts in yields ranging from 0-82%. The range of 

cyclopropanes was wide with aryl, heteroaryl, vinyl, alkynyl and phthalimido substituents 

being tolerated well but cyclopropanes bearing an aryl moiety with an electron 

withdrawing group such as an ester, nitrile, or nitro group failed to undergo a successful 

reaction. The difference between EWG and EDG on the aryl ring is that the EDG is better 

at stabilizing the developing positive charge on the DA cyclopropane during the 

annulation process. The inductive effect became more apparent with di- and tri- 

substituted groups, as the cyclopropane was now less reactive due to the electron 

withdrawing effect of the meta-substituted OMe’s resulting in diminished yields of the 
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azabicycles, when compared to the mono-substituted azabicycle. Despite the minor 

electron donating effect of the ester on bis(2,2,2-trifluoroethyl) 2-acetoxycyclopropane-

1,1-dicarboxylate (2-90g), no annulation product was obtained, and instead, only 

dimerization of vinyl azide was observed. The methodology was not limited to mono-

donor substituted DA cyclopropanes; DA cyclopropanes with a quaternary donor center 

also produced the expected azabicycles 2-91i and 2-91j. Except for 2-91i, all adducts 

were produced as single diastereomer, which was later confirmed by x-ray 

crystallography to have the substituent from the cyclopropane and the vinyl azide trans to 

each other (Figure 2-2). 

N

Ph CO2CH2CF3

CO2CH2CF3

2-91a

 

Figure 2-2. Solid state structure of 2-91a. 

 Rationale for the observed diastereoselectivity 

A concrete explanation for the observed diastereoselectivity is somewhat unclear; 

however, a rationale which predicts the observed results is shown in Scheme 2-25. 

Zwitterionic species I may undergo Mannich-style ring closure via transition state II 

resulting in the formation of the observed diastereomer III. Transition state II would 

have the R2 in a pseudo-equatorial position in the newly formed five-membered ring.  
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Scheme 2-25. Proposed transition state for the observed diastereoselectivity. 

 Reactions with 2H-azirine 

Given the success for the reaction of vinyl azides with bis(2,2,2-trifluoroethyl) 

cyclopropane-1,1-dicarboxylates, it was decided to reinvestigate the reaction of 2H-

azirine. With the more activated DA cyclopropanes, azabicycles were now being formed, 

and thus, a new scope was developed for DA cyclopropanes 2-90a-j with 2H-azirine 2-81 

(Scheme 2-26). For the most part, the azabicycles were formed in higher yields, and with 

reduced dimerization compared to the reaction of DA cyclopropanes with vinyl azide 

(25-92% vs. 27-82% yield). Interestingly, the reaction between 2H-azirine 2-81 with 

cyclopropane 2-90g proceeded to give azabicycle 2-91g in 34% but in the reaction with 

the vinyl azide, the annulation product was not observed. The reason for the different 

reactivity with DA cyclopropane 2-90g is still unclear, and studies into the potential 

mechanism of the reaction is required for further insight. As previously observed, 

azabicycles were also formed as a single diastereomer, except for compound 2-91j. 
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Scheme 2-26. Reaction scope for the annulation reaction between 2H-azirine 2-81 and 

DA cyclopropanes 2-90a-j  to give azabicycles 2-91a-j. 

Although the enhanced electrophilicity of the DA cyclopropane now favoured the 

formation of azabicycles with 2H-azirine, a significant difference between the use of 2H-

azirine and vinyl azide is their reaction times; azabicycles were formed faster with vinyl 

azide 2-9 (Scheme 2-24) vs. 2H-azirine 2-81 (Scheme 2-26). We were intrigued by the 

difference, so we postulated that the bis(2,2,2-trifluoroethyl)1-azabicyclo[3.1.0]hexane-

4,4-dicarboxylates (2-91a-j)  could be formed via a vinyl nitrene intermediate . 

 Postulated Reaction Mechanism 

The formation of vinyl nitrenes from the thermal decomposition of vinyl azide and 2H-

azirines has been well documented in the literature.20,22,23 It is our working hypothesis 
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that in the reaction of cyclopropane 2-90a and vinyl azide 2-85 (Scheme 2-27), the 

formation of the vinyl nitrene (2-92) is fast, resulting in a high concentration in solution; 

consequently, the vinyl nitrene might engage in a ring opening reaction of DA 

cyclopropane 2-90a to give intermediate 2-93, which rearranges to the stable imminium 

ion (2-94). A Mannich-type ring closure will then afford azabicycle 2-91a. In the case of 

the reaction with the 2H-azirine, the vinyl nitrene may be forming at a slower rate, 

resulting in a lower concentration in solution, thus suppressing dimerization and 

favouring the reaction with the cyclopropane. It is also important to note that perhaps in 

the both reactions, the vinyl azide (Scheme 2-21) and the 2H-azirine (Scheme 2-18) are, 

independently, the reactive species for both reactions. The vinyl azide perhaps is more 

nucleophilic than the 2H-azirine, which would explain why the formation of the 

azabicycles is faster (shorter reaction times) than in the reaction with the 2H-azirine. 

Nonetheless, further experimental data, such as reaction kinetics, is required to gain more 

insight on the mechanism of the reaction. 
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Scheme 2-27. Possible mechanistic pathway for the formation of bis(2,2,2-

trifluoroethyl)-2,5-diphenyl-1-azabicyclo[3.1.0]hexane-4,4-dicarboxylate (2-91a). 
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2.5 Recent Advances in this Field 

Shortly after the publication of this work, Dey and Banerjee published the Lewis acid-

catalyzed [3+2] annulation reaction of DA cyclopropane 2-95 with vinyl azide 2-96 to 

give azidocyclopentane 2-97 (Scheme 2-28).38 The reactions were carried out by 

employing two sets of reaction conditions. Method A used MgI2 (20 mol%) as the Lewis 

acid in CH2Cl2 and the products were obtained with excellent diastereoselectivity (up to 

94:6 dr) but it required longer reaction times (>20 h) and lower yields (up to 78% yield). 

Method B employed the use of InCl3 (20 mol%) in CH2Cl2 which gave the product in 

good yields (>88 % yield), shorter reaction times (< 3 h) but low diastereoselectivity (up 

to 78:22 dr). The reaction proceeded well with a mono-, di-, and tri-substituted methoxy 

aryl groups on the DA cyclopropane as well as 2-furyl substituted DA cyclopropane. The 

reaction did not work with DA cyclopropanes bearing p-tolyl or o-tolyl substituents. Dey 

and Banerjee could react azidocyclopentane 2-97 with InCl3 in xylene heated to 140 °C to 

afford tetrahydropyridine 2-98. 

 

Scheme 2-28. Dey and Banerjee’s [3+2] annulation of DA cyclopropane with vinyl 

azide. 

Comparable results to this methodology were obtained by Chiba and co-workers where 

the azidocyclopentane derivatives were synthesized using Sc(OTf)3 as the Lewis acid.39 

2.6 Summary and Future Work 

The annulation of DA cyclopropanes with dipolarophiles provides organic chemists an 

easy approach to a variety of interesting heterocycles, many of which possessing 

biological properties. Our contribution to this area of research is characterized by a new 

annulation reaction between a vinyl azide or 2H-azirine with DA cyclopropanes to 

produce 1-azabicyclo[3.1.0]hexane-4,4-dicarboxylates (Scheme 2-29).  
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Scheme 2-29. Reaction summary for the synthesis of 1-azabicyclo[3.1.0]hexane-4,4-

dicarboxylates. 

During this study, it was found that the replacement of the common methyl ester on the 

cyclopropane to a more electrophilic fluoroester favoured the annulation reaction to form 

the observed azabicycle, which consequently reduce the formation of side products, such 

as the dimerization of the vinyl azide. We postulate that the reaction mechanism might 

involve a vinyl nitrene intermediate, which forms upon heating the vinyl azide or 2H-

azirine, as the reacting partner in the annulation reaction. Further studies, such as reaction 

kinetics, are required to gain more insight into the mechanism of the reaction. 

Future directions for this project would involve the study of the reactivity of the 

azabicycle towards ring opening of the aziridine ring (Scheme 2-30). In that matter, 

quaternization of azabicycle 2-99 followed by a Krapcho decarboxylation could yield 

tetrahydropyridine 2-101. Alternatively, quaternization of azabicycle 2-99 followed by 

the reaction with a nucleophile could give two potential products; pathway a could yield 

pyrrolidine 2-103 upon nucleophilic ring opening at the least substituted carbon of the 
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activated aziridine 2-102, and pathway b could yield piperidine 2-104 could be obtained 

from the nucleophilic ring opening of the activated aziridine 2-102 at the most substituted 

carbon. 

 

Scheme 2-30. Possible pathways for ring expansion of azabicycle 2-100. 

 

2.7 Experimental 

General information 

All reactions were carried under an Argon atmosphere unless indicated. Toluene, 

benzene, and dichloromethane (CH2Cl2) were dried and deoxygenated by passing the 

nitrogen purged solvents through activated alumina columns. All other reagents and 

solvents were used as purchased from Sigma Aldrich, Caledon or VWR. Reaction 

progress was followed by thin layer chromatography (TLC) (EM Science, silica gel 60 

F254) visualizing with UV light, and the plates were developed using acidic anisaldehyde 

or KMnO4 stain. Flash column chromatography was performed using silica gel purchased 

from Silicycle Chemical Division Inc. (230-400 mesh). 

NMR experiments were performed on the Varian Mercury 400, Inova 400 and Inova 600 

instruments; samples were obtained in CDCl3 (referenced to 7.26 ppm for 1H and 77.0 
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ppm for 13C). Coupling constants (J) are in Hz. The multiplicities of the signals are 

described using the following abbreviations: s = singlet, d = doublet, t = triplet, q = 

quartet, dq= doublet of quartets, m = multiplet, b = broad. Infrared spectra were obtained 

as thin films on NaCl plates using the Bruker Vector 33 FT-IR instrument.  High 

resolution mass spectra (HRMS) were obtained on a Thermo Scientific DFS (Double 

Focusing Sector). Melting points were determined using a Gallenkamp melting point 

apparatus and were uncorrected. 

Experimental Procedure A: Synthesis of bis(2,2,2-trifluoroethyl)cyclopropane-1,1-
dicarboxylates (2-90g-i). 

 

Cyclopropanes 2-90g-i were prepared according to the following procedure. To a 10 mL 

or 25 mL round-bottomed flask was added the corresponding alkene (2-90gg-ii) 

derivative (1.0 equiv), CH2Cl2 (4 mL - 8 mL) and Rh2(esp)2 catalyst (0.1 mol %). The 

bis(2,2,2-trifluoroethyl)2-diazomalonate37c (2-106) (1.3 equiv) was dissolved in CH2Cl2 

(3 mL) and added dropwise over a period of 45 mins - 1 h at room temperature. The 

reaction was stirred at room temperature for 1.5 - 3 h (monitored by TLC). The crude 

reaction mixture was concentrated, pre-absorbed onto silica gel, and purified by column 

chromatography (EtOAc in Hexanes). 

Bis(2,2,2-trifluoroethyl) 2-acetoxycyclopropane-1,1-dicarboxylate 

(2-90g). 

Following experimental procedure A, cyclopropane 2-90g was 

prepared by dissolving commercially available vinyl acetate (2-90gg) (200 mg, 2.32 

mmol) and Rh2(esp)2 (2.0 mg, 0.002 mmol) in 5 mL of CH2Cl2 followed by the addition 

of bis(2,2,2-trifluoroethyl)2-diazomalonate (2-106) (887 mg, 3.02 mmol) dissolved in 3 

mL of CH2Cl2. The reaction was stirred at room temperature for 8 hours. Cyclopropane 

1-52a (711 g, 2.02 mmol, 87 % yield) was obtained as a colourless oil. Rf = 0.49 (30% 

EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) δ = 4.89 (dd, J = 7.0, 5.5 Hz, 1H) 4.42 - 
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4.71 (m, 4H) 2.14 (dd, J = 6.6, 5.5 Hz, 1H) 2.04 (s, 3H) 1.87 (dd, J = 7.0, 5.5 Hz, 1H). 

19F NMR (376 MHz, CDCl3) δ = -73.8 (t, J = 7.9 Hz, 3F), -73.9 (t, J = 7.9 Hz, 3F). 13C 

NMR (150 MHz, CDCl3) δ = 169.9, 165.9, 163.3, 122.4 (d, JC-F = 277 Hz, 1C), 122.3 (d, 

JC-F = 277 Hz, 1C), 61.4 (q, JC-F = 37 Hz, 1C), 61.2 (d, JC-F = 37 Hz, 1C), 57.5, 33.4, 

20.5, 20.2. FT-IR (thin film, cm-1): 3114, 3030, 2982, 1765, 1415, 1366, 1279, 1227, 

1170, 1117, 976. HRMS calc’d for C11H10F6O6 [M+]: 352.0382; found: 352.0460. 

 

Bis(2,2,2-trifluoroethyl)2-methyl-2-phenylcyclopropane-1,1-

dicarboxylate (2-90i).  

Following experimental procedure A, cyclopropane 2-91i was 

prepared by dissolving commercially available α-methylstyrene (2-90ii) (200 mg, 1.70 

mmol) and Rh2(esp)2 (1.50 mg, 0.002 mmol) in 5 mL of CH2Cl2 followed by the addition 

of bis(2,2,2-trifluoroethyl)2-diazomalonate (2-106) (647 mg, 2.20 mmol) dissolved in 3 

mL of CH2Cl2. The reaction was stirred at room temperature for 12 hours. Cyclopropane 

2-91i (648 mg,1.70 mmol, quantitative yield) was obtained as a clear oil. Rf = 0.60 (30% 

EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) δ = 7.32 - 7.23 (m, 5H), 4.73 - 4.52 (m, 

2H), 4.16 (dq, J = 12.7, 8.3 Hz, 1H), 3.99 (dq, J = 12.7, 8.3 Hz, 1H), 2.35 (d, J = 5.9 Hz, 

1H), 1.86 (d, J = 5.5 Hz, 1H), 1.58 (s, 3H). 19F NMR (376 MHz, CDCl3) δ = -73.6 (t, J = 

7.9 Hz, 3F), -73.8 (t, J = 7.9 Hz, 3F). 13C NMR (100 MHz, CDCl3) δ = 166.2, 165.5, 

139.8, 128.5, 128.1, 127.6, 122.5 (d, JC-F = 277 Hz, 1C), 122.0 (d, JC-F = 277 Hz, 1C), 

61.2 (q, JC-F = 37 Hz, 1C), 60.9 (q, JC-F = 37 Hz, 1C), 40.1, 39.6, 25.7, 24.1. FT-IR (thin 

film, cm-1): 3063, 2975, 2935, 1751, 1498, 1448, 1412, 1286, 1168, 1103, 977. HRMS 

calc’d for C16H14F6O4 [M+]: 384.0796; found: 384.0787. 

Bis(2,2,2-trifluoroethyl) 2-(but-1-ynyl)-2-methylcyclopropane-

1,1-dicarboxylate (2-90j).  

Following experimental procedure A, cyclopropane 2-90j was 

prepared by dissolving commercially available 2-methylhex-1-en-3-yne (2-90jj) (500 

mg, 5.30 mmol) and Rh2(esp)2 (4.02 mg, 0.005 mmol) in 7 mL of CH2Cl2 followed by the 

addition of bis(2,2,2-trifluoroethyl)2-diazomalonate (2-106) (2.03 g, 6.90 mmol) 
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dissolved in 3 mL of CH2Cl2. The reaction was stirred at room temperature for 8 hours. 

Cyclopropane 2k (1.90 g, quantitative yield) was obtained as a colourless oil. Rf = 0.40 

(10% EtOAc in hexanes). 1H NMR (400 MHz, CDCl3) δ = 4.54 (m, 4H), 2.13 (q, J = 

7.42, 2H), 2.01 (d, J = 5.1 Hz, 1H), 1.69 (d, J = 5.4 Hz, 1H), 1.49 (s, 3H), 1.06 (t, J = 7.4 

Hz, 3H). 19F NMR (376 MHz, CDCl3) δ = -73.8 (t, J = 8.6 Hz, 3F), -73.8 (t, J = 8.6 Hz, 

3F). 13C NMR (100 MHz, CDCl3) δ = 165.8, 165.5, 121.6 (q, JC-F = 277 Hz, 1C), 121.5 

(q, J = 277 Hz, 1C), 83.8, 78.4, 61.5 (q, JC-F = 37 Hz, 1C), 61.3 (q, JC-F = 37 Hz, 1C), 

40.0, 28.6, 26.6, 20.8, 14.0, 12.5.  FT-IR (thin film, cm-1): 2981, 2944, 2884, 2247, 2131, 

1748, 1410, 1280, 1160, 1105. HRMS calc’d for C14H14F6O4 [M+]: 360.0796; found: 

360.0789. 

 

Experimental procedure B: Synthesis of azabicyclo[3.1.0]hexane-4,4-dicarboxylates (2-
91a-j).       
 

Caution! Although we have never had any incidents, organic azides are potentially 

explosive substances that can decompose upon the exposure to heat, light, and pressure. 

Any azide synthesized should be stored in the freezer and in the dark. In addition, 

molecules containing the azido moiety can decompose violently which may result in injury 

if proper safety precautions are not taken. Reactions were performed with a blast shield. 

 

In a 10 mL round-bottomed flask, the appropriate bis(2,2,2-trifluoroethyl) cyclopropane-

1,1-dicarboxylate (2-90a-j) (1.0 equiv) and Dy(OTf)3 (10 mol%) catalyst were dissolved 

in 6 mL of toluene. The reaction flask was fitted with a condenser and heated to 110 oC. 

To this mixture, (1-azidovinyl)benzene40 (2-85) (2.0 equiv) (Method A) or 3-phenyl-2H-

azirine40 (2-81) (2.0 equiv) (Method B), diluted in 1 mL of toluene, was added dropwise 

over a period of 10-15 mins. The reaction was heated to 110 oC for 3-20 hours 

(monitored by TLC). The reaction flask was cooled to room temperature and the toluene 

was removed in vacuo. The crude reaction mixture was then pre-absorbed onto silica gel 

and purified by column chromatography (EtOAc in Hexanes).  
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Bis(2,2,2-trifluoroethyl) 2,5-diphenyl-1-azabicyclo[3.1.0]hexane-      4,4-

dicarboxylate (2-91a). 

Following experimental procedure B Method A compound 2-91a was 

prepared by dissolving bis(2,2,2-trifluoroethyl) 2-phenylcyclopropane-

1,1-dicarboxylate37a (2-90a) (100 mg, 0.270 mmol) and Dy(OTf)3 (16.8 mg, 0.027 mmol) 

in 6 mL of toluene. (1-azidovinyl)benzene (2-85) (78.3 mg, 0.540 mmol), in 1 mL of 

toluene, was then added dropwise. The reaction was heated to 110 oC for 3.5 hours.  

Compound 2-91a (72 mg, 0.147mmol, 55 %) was obtained as a clear oil. Rf = 0.62 (30% 

EtOAc in hexanes). 

Following experimental procedure B Method B, compound 2-91a was prepared by 

dissolving bis(2,2,2-trifluoroethyl)2-phenylcyclopropane-1,1-dicarboxylate (2-90a) (150 

mg, 0.405 mmol) and Dy(OTf)3 (25.0 mg, 0.041 mmol) in 6 mL of toluene. 3-phenyl-2H-

azirine (2-81) (95.0 mg, 0.810 mmol), in 1 mL of toluene, was then added dropwise. The 

reaction was heated to 110 oC for 10 hours.  Compound 2-91a (124 mg, 0.254 mmol, 63 

%) was obtained as a clear oil. 

1H NMR (400 MHz, CDCl3) δ = 7.61 (d, J = 1.0 Hz, 2H), 7.47 (d, J = 1.0 Hz, 2H),  7.40 

(m, 2H), 7.36 - 7.28 (m, 4H), 5.35 (dd, J = 10.9, 7.0 Hz, 1H),  4.64 (dq, J = 14.1, 7.0 Hz, 

1H),  4.52 (dq, J = 12.5, 8.2 Hz, 1H),  4.39 (dq, J = 12.5, 8.2 Hz, 1H),  3.77 (dq, J = 12.5, 

8.2 Hz, 1H),  3.05 (dd, J = 14.1, 7.0 Hz, 1H),  2.23 (dd, J = 13.9, 11.1 Hz, 1H),  2.16 (s, 

1H),  2.15 (s, 1H).  19F NMR (376 MHz, CDCl3) δ = -73.7 (t, J = 8.6 Hz, 3F), -73.9 (t, J 

= 8.6 Hz, 3F).  13C NMR (100 MHz, CDCl3) δ = 168.1, 167.9, 139.7, 136.8, 128.7, 

128.5, 128.1, 128.1, 127.3, 126.6, 126.3, 123.7 (d, JC-F = 277 Hz, 1C), 120.9 (d, JC-F = 

277 Hz, 1C), 66.2, 65.1, 61.3 (q, JC-F = 37 Hz, 1C), 61.2 (q, JC-F = 37 Hz, 1C), 54.9, 37.7, 

32.8. FT-IR (thin film, cm-1): 3062, 3031, 1754, 1604, 1496, 1448, 1413, 1286, 1169, 

1104, 980, 700. HRMS calc’d for C23H19F6NO4 [M+]: 487.1218; found: 487.1144. 

Bis(2,2,2-trifluoroethyl)2-(4-methoxyphenyl)-5-phenyl-1-

azabicyclo[3.1.0]hexane- 4,4-dicarboxylate (2-91b). 

N

Ph CO2CH2CF3

CO2CH2CF3

N

Ph CO2CH2CF3

CO2CH2CF3

OMe
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 Following experimental procedure B Method A, compound 2-91b was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(4-methoxyphenyl)cyclopropane-1,1-

dicarboxylate37a (2-90b) (150 mg, 0.375 mmol) and  Dy(OTf)3 ( 23.0 mg, 0.037 mmol) in 

6 mL of toluene. (1-azidovinyl)benzene (2-85) (108 mg, 0.750 mmol), in 1 mL of 

toluene, was then added dropwise. The reaction was heated at 110 oC for 3 hours.  

Compound 2-91b (140 mg, 72 %) was obtained as a white solid. MP = 98-100 oC. Rf = 

0.56 (30% EtOAc in hexanes). 

Following experimental procedure B Method B, compound 2-91b was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate 

(2-90b) (150 mg, 0.375 mmol) and  Dy(OTf)3 (23.0 mg, 0.037 mmol) in 6 mL of toluene. 

3-phenyl-2H-azirine (2-81) (87.8 mg, 0.750 mmol), in 1 mL of toluene, was then added 

dropwise. The reaction was heated at 110 oC for 14 hours.  Compound 2-91c (179 mg, 

0.346mmol, 92 %) was obtained as a white solid. 

1H NMR (400 MHz, CDCl3) δ = 7.60 (dd, J = 6.6, 1.9 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 

7.24 - 7.34 (m, 3H), 6.93 (d, J = 8.9 Hz, 2H), 5.27 (dd, J = 11.1, 7.2 Hz, 1H), 4.63 (dq, J 

= 12.8, 8.2 Hz, 1H), 4.52 (dq, J = 12.8, 8.2 Hz, 1H), 4.37 (dq, J = 12.5, 8.2 Hz, 1H), 3.82 

(s, 3H), 3.76 (dq, J = 12.8, 8.2 Hz, 1H), 2.98 (dd, J = 14.1, 7.0 Hz, 1H), 2.20 (dd, J = 

13.9, 11.1 Hz, 1H), 2.14 (s, 1 H), 2.09 (s, 1H). 19F NMR (376 MHz, CDCl3) δ = -73.74 

(t, J = 8.6 Hz, 3F), -73.94 (t, J = 8.6 Hz, 3F). 13C NMR (100 MHz, CDCl3) δ = 168.2, 

167.9, 158.8, 136.8, 131.5, 128.7, 128.0, 127.8, 123.7 (d, JC-F = 277 Hz, 1C), 120.9 (d, 

JC-F = 277 Hz, 1C), 113.8, 66.2, 64.6, 61.3 (q, JC-F = 37 Hz, 1C), 61.2 (q, JC-F = 37 Hz, 

1C), 55.3, 54.8, 37.7, 32.6, 30.8. FT-IR (thin film, cm-1): 2969, 2838, 1753, 1612, 1514, 

1413, 1287, 1249, 1170, 1103, 981, 701. HRMS calc’d for C24H21F6NO5 [M+]: 517.1324; 

found: 517.1230. 

 

Bis(2,2,2-trifluoroethyl) 2-(3,4-dimethoxyphenyl)-5-phenyl-1-

azabicyclo[3.1.0] hexane-4,4-dicarboxylate (2-91c). 

N

Ph CO2CH2CF3

CO2CH2CF3

OMe

OMe
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 Following experimental procedure B Method A, compound 2-91c was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(3,4-dimethoxyphenyl)cyclopropane-1,1-

dicarboxylate41 (2-90c) (155 mg, 0.360 mmol) and  Dy(OTf)3 (22 mg, 0.036 mmol) in 6 

mL of toluene. (1-azidovinyl)benzene (2-85) (104 mg, 0.720 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 8 hours.  Compound 2-

91c (78 mg, 0.142 mmol, 40%) was obtained as a yellow oil. Rf = 0.20 (30% EtOAc in 

hexanes). 

Following experimental procedure C Method B, compound 2-91c was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2- (3,4-dimethoxyphenyl)cyclopropane-1,1-

dicarboxylate (2-90c) (150 mg, 0.348 mmol) and Dy(OTf)3 (21 mg, 0.035 mmol) in 6 mL 

of toluene. 3-phenyl-2H-azirine (2-81) (81.7 mg, 0.697 mmol), in 1 mL of toluene, was 

then added dropwise. The reaction was heated at 110 oC for 16 hours.  Compound 2-91c 

(148 mg, 0.270 mmol, 78 %) was obtained as a yellow oil.  

1H NMR (400 MHz, CDCl3) δ = 7.56 (dd, J = 8.2, 1.9 Hz, 2H), 7.31 - 7.21 (m, 3H), 6.99 

(d, J = 2.0 Hz, 1H), 6.89 (dd, J = 8.2, 1.9 Hz, 1H), 6.84 (s, 1H), 5.24 (dd, J = 10.9, 7.4 

Hz, 1H), 4.60 (dq, J = 16.4, 8.2 Hz, 1H), 4.49 (dq, J = 16.4, 8.2 Hz, 1H), 4.35 (dq, J = 

12.5, 8.2 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.72 (dq, J = 12.5, 8.2 Hz, 1H), 2.96 (dd, J = 

14.1, 7.0 Hz, 1H), 2.18 (dd, J = 13.9, 11.1 Hz, 1H), 2.11 (s, 1H), 2.07 (s, 1H). 19F NMR 

(376 MHz, CDCl3) δ = -73.7 (t, J = 8.6 Hz, 3F), -73.9 (t, J = 8.6 Hz, 3F). 13C NMR (100 

MHz, CDCl3) δ = 168.2, 167.8, 148.9, 148.3, 136.8, 132.2, 128.7, 128.1, 122.5 (q, JC-F = 

277 Hz, 1C), 122.1 (q, JC-F = 277 Hz, 1C), 118.3, 111.0, 110.5, 66.2, 64.8, 61.3 (q, JC-F = 

37 Hz, 1C), 63.2 (q, JC-F = 37 Hz, 1C), 56.0, 55.9, 54.8, 37.6, 32.6. FT-IR (thin film, cm-

1): 3062, 3004, 2965, 2838, 1753, 1518, 1414, 1285, 1242, 1168, 1103, 1028, 975. 

HRMS calc’d for C25H23F6NO6 [M+]: 547.1430 found; 547.1451. 

 

Bis(2,2,2-trifluoroethyl) 5-phenyl-2-(3,4,5-trimethoxyphenyl)-1-

azabicyclo[3.1.0] hexane-4,4-dicarboxylate (2-91d).  

N

Ph CO2CH2CF3

CO2CH2CF3

OMe

OMe

MeO
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Following experimental procedure B Method A, compound 2-91d was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(3,4,5-trimethoxyphenyl)cyclopropane-1,1-

dicarboxylate41 (2-90d) (150 mg, 0.326 mmol) and Dy(OTf)3 (20 mg, 0.033 mmol) in 6 

mL of toluene. (1-azidovinyl)benzene (2-85) (94.5 mg, 0.652 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 8 hours.  Compound 2-

90d (96 mg, 0.166 mmol, 51%) was obtained as a white solid. MP = 111-113 oC.  Rf = 

0.24 (30% EtOAc in hexanes).  

Following experimental procedure C Method B, compound 2-91d was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(3,4,5-trimethoxyphenyl)cyclopropane-1,1-

dicarboxylate (2-90d) (150 mg, 0.326 mmol) and Dy(OTf)3 (20 mg, 0.033 mmol) in 6 

mL of toluene. 3-phenyl-2H-azirine (2-81) (76.3 mg, 0.652 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 18 hours.  Compound 2-

91d (158 mg, 84 %) was obtained as a white solid.  

1H NMR (400 MHz, CDCl3) δ = 7.56 - 7.60 (m, 2H), 7.34 - 7.24 (m, 3H), 6.64 (d, J = 

0.8 Hz, 2H), 5.26 (dd, J = 10.9, 7.4 Hz, 1H), 4.62 (qd, J = 16.4, 8.2 Hz, 1H), 4.52 (dq, J = 

16.4, 8.2 Hz, 1H), 4.38 (dq, J = 12.6, 8.3 Hz, 1H), 3.87 (s, 6H), 3.84 (s, 3 H), 3.75 (dq, J 

= 12.5, 8.2 Hz, 1H), 3.00 (dd, J = 13.9, 7.2 Hz, 1H), 2.19 (dd, J = 14.0, 10.9 Hz, 1H), 

2.15 (s, 3H), 2.14 (d, J = 3.1 Hz, 2H). 19F NMR (376 MHz, CDCl3) δ = -73.7 (t, J = 8.6 

Hz, 3F), -73.9 (t, J = 8.6 Hz, 3F). 13C NMR (100MHz, CDCl3) δ = 168.0, 167.7, 153.2, 

137.2, 136.6, 135.4, 128.7, 128.1, 122.4 (q, JC-F = 277 Hz, 1C), 122.0 (q, JC-F = 277 Hz, 

1C), 103.8, 66.7, 65.1, 61.3 (q, JC-F = 37 Hz, 1C), 61.2 (q, JC-F = 37 Hz, 1C), 60.7, 56.2, 

54.8, 37.7, 32.8. FT-IR (thin film, cm-1): 3061, 2969, 2942, 1753, 1589, 1509, 1416, 

1286, 1241, 1168, 1128, 977, 701. HRMS calc’d for C26H25F6NO7 [M+]: 577.1535; 

found: 577.1560.  

Bis(2,2,2-trifluoroethyl)-5-phenyl-2-(thiophen-2-yl)-1-

azabicyclo[3.1.0]hexane-4,4-dicarboxylate (2-91e). 

Following experimental procedure B Method A, compound 2-91e was 

prepared by dissolving bis(2,2,2-trifluoroethyl)2-(thiophen-2-yl)cyclopropane-1,1-

dicarboxylate41 (2-90e) (150 mg, 0.399 mmol) and  Dy(OTf)3 (24 mg, 0.039 mmol) in 6 

N

Ph CO2CH2CF3

CO2CH2CF3

S
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mL of toluene. (1-azidovinyl)benzene (2-85) (115 mg, 0.798 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 12 hours Compound 2-

91e (155 mg, 0.314 mmol, 80%) was obtained as a yellow oil. Rf = 0.48 (30% EtOAc in 

hexanes). 

Following experimental procedure B Method B, compound 2-91e was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(thiophen-2-yl)cyclopropane-1,1-dicarboxylate (2-

90e) (150 mg, 0.399 mmol) and  Dy(OTf)3 (24 mg, 0.039 mmol) in 6 mL of toluene. 3-

phenyl-2H-azirine (2-81) (93.4 mg, 0.798 mmol), in 1 mL of toluene, was then added 

dropwise. The reaction was heated at 110 oC for 18 hours.  Compound 8f (157 mg, 80 %) 

was obtained as a yellow oil. 

1H NMR (400 MHz, CDCl3) δ = 7.59 - 7.55 (m, 2H), 7. 32 - 7.23 (m, 4H), 7.05-6.98 (m, 

2H), 5.43 (dd, J = 10.7, 6.8 Hz, 1H), 4.64 (dq,  J = 12.5, 8.2 Hz, 1H), 4.52 (dq, J = 16.4, 

8.2 Hz, 1H), 4.35 (dq, J = 12.5, 8.2 Hz, 1H), 3.75 (dq, J = 16.4, 8.2 Hz, 1H), 2.98 (dd, J = 

14.1, 7.0 Hz, 1H),  2.28 (dd, J = 14.1, 7.0 Hz, 1H),  2.26 (d, J = 1.2 Hz, 1H), 2.06 (d, J = 

1.2 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ = -73.74 (t, J = 8.6 Hz, 3F), -73.94 (t, J = 

8.6 Hz, 3F). 13C NMR (100 MHz, CDCl3) δ = 168.0, 167.6, 142.1, 136.5, 128.6, 128.2, 

128.1, 126.7, 124.9, 124.8, 122.5 (q, JC-F = 277 Hz, 1C), 122.1 (q, JC-F = 277 Hz, 1C), 

66.2, 62.0, 61.3 (q, JC-F = 37 Hz, 1C), 63.2 (q, JC-F = 37 Hz, 1C), 55.4, 38.6, 32.8. FT-IR 

(thin film, cm-1): 3064, 2973, 1754, 1448, 1413, 1286, 1247, 1170, 1103, 978, 701. 

HRMS calc’d for C21H17F6NO4S[M+]: 493.0782; found: 493.0721.  

 

 

 Bis(2,2,2-trifluoroethyl) 2-(1,3-dioxoisoindolin-2-yl)-5-phenyl-1-

azabicyclo[3.1.0] hexane-4,4-dicarboxylate (2-91f).  

Following experimental procedure B Method A, compound 2-91f was 

prepared by dissolving bis(2,2,2-trifluoroethyl) 2-(1,3-dioxoisoindolin-2-

yl)cyclopropane-1,1-dicarboxylate41 (2-90f)  (150 mg, 0.342 mmol) and  Dy(OTf)3 (21 

N

Ph CO2CH2CF3

CO2CH2CF3

NPhth
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mg, 0.034 mmol) in 6 mL of toluene. (1-azidovinyl)benzene (2-85) (99 mg, 0.684 mmol), 

in 1 mL of toluene, was then added dropwise. The reaction was heated at 110 oC for 16 

hours. Compound 2-91f (70mg, 0.126 mmol, 37%) was obtained as a yellow solid. MP = 

151-153 oC. Rf = 0.41 (30% EtOAc in hexanes).  

Following experimental procedure B Method B, compound 2-91f was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-

dicarboxylate41 (2-90f)  (150 mg, 0.342 mmol) and  Dy(OTf)3 (21 mg, 0.034 mmol) in 6 

mL of toluene. 3-phenyl-2H-azirine (2-81) (80 mg, 0.684 mmol), in 1 mL of toluene, was 

then added dropwise. The reaction was heated at 110 oC for 20 hours.  Compound 2-91f 

(140 mg, 0.252 mmol, 74%) was obtained as a yellow solid. 

1H NMR (400 MHz, CDCl3) δ = 7.92 (d, J = 2.7 Hz, 1H), 7.90 (d, J = 3.1 Hz, 1H), 7.79 

(d, J = 3.1 Hz, 1H), 7.77 (d, J = 3.1 Hz, 1H), 7.61 - 7.57 (m, 2H), 7.34 - 7.25 (m, 5 H), 

6.36 (dd, J = 10.9, 7.0 Hz, 1H), 4.71 - 4.55 (m, 2H), 4.35 (dq, J = 12.5, 8.3 Hz, 1H), 3.73 

(dq, J = 12.5, 8.2 Hz, 1H), 3.48 (dd, J = 14.1, 10.9 Hz, 1H), 3.20 (d, J = 1.2 Hz, 1H) 2.68 

(dd, J = 14.1, 7.0 Hz, 1H) 2.15 (d, J = 1.6 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ = -

73.74 (t, J = 8.6 Hz, 3F), -73.94 (t, J = 8.6 Hz, 3F). 13C NMR (100 MHz, CDCl3) δ = 

168.2, 167.8, 167.3, 135.8, 134.5, 131.5, 128.6, 128.3, 128.1, 123.8, 123.6, 68.8, 64.9, 

61.4 (q, JC-F = 37 Hz, 1C), 61.3 (q, JC-F = 37 Hz, 1C), 52.9, 35.1, 30.7. FT-IR (thin film, 

cm-1): 3030, 2979, 2880, 1777, 1719, 1604, 1448, 1373, 1284, 1169, 996, 717. HRMS 

calc’d for C25H18F6N2O6 [M+]: 556.1069; found: 556.1005. 

 

 

 Bis(2,2,2-trifluoroethyl) 2-acetoxy-5-phenyl-1-azabicyclo[3.1.0]  

hexane-4,4-dicarboxylate (2-91g). 

Following experimental procedure B Method B, compound 2-91g was 

prepared by dissolving cyclopropane 2-90 (150 mg, 0.426 mmol) and Dy(OTf)3 (26 mg, 

0.043 mmol) in 6 mL of toluene. 3-phenyl-2H-azirine (2-85) (100 mg, 0.852 mmol), in 1 

N

Ph CO2CH2CF3

CO2CH2CF3

O
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mL of toluene, was then added dropwise. The reaction was heated at 110 oC for 16 hours.  

Compound 2-91g (67 mg, 0.143 mmol, 34%) was obtained as a yellow oil. Rf = 0.3 (30% 

EtOAc in hexanes).  

1H NMR (400 MHz, CDCl3) δ = 7.54 - 7.50 (m, 2H), 7.30 - 7.23 (m, 3H), 6.47 (dd, J = 

7.9, 6.7 Hz, 1H), 4.65 (dq, J = 12.5, 8.3 Hz, 1H), 4.49 (dq, J = 12.5, 8.3 Hz, 1H), 4.29 

(dq, J = 12.5, 8.2 Hz, 1H), 3.71 (dq, J = 12.5, 8.2 Hz, 1H),  2.97 (dd, J = 14.4, 6.7 Hz, 

1H), 2.13 (d, J = 1.8 Hz, 1H),  2.12 (s, 3H),  2.04 (dd, J = 14.4, 8.5 Hz, 1H). 19F NMR 

(376 MHz, CDCl3) δ = -73.74 (t, J = 8.6 Hz, 3F), -73.94 (t, J = 8.6 Hz, 3F).  13C NMR 

(100 MHz, CDCl3) δ = 169.4, 167.5, 167.2, 135.7, 128.5, 128.1, 122.4 (q, JC-F = 277 Hz, 

1C), 121.9 (q, JC-F = 277 Hz, 1C), 87.6, 64.5, 61.4 (q, JC-F = 37 Hz, 1C), 61.3 (q, JC-F = 

37 Hz, 1C), 54.2, 36.3, 33.0, 20.8. FT-IR (thin film, cm-1): 3064, 3031, 2975, 1755, 

1496, 1448, 1413, 1285, 1111, 1031, 979. HRMS calc’d for C19H17F6NO6 [M+]: 

469.0960; found: 469.0899. 

Bis(2,2,2-trifluoroethyl) 5-phenyl-2-vinyl-1-azabicyclo[3.1.0] 

hexane-4,4-dicarboxylate (2-91h). 

 Following experimental procedure B Method A, compound 2-91h 

was prepared by dissolving bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-

dicarboxylate41 (2-90h) (123mg, 0.384 mmol) and Dy(OTf)3 (23 mg, 0.040 mmol) in 6 

mL of toluene. (1-azidovinyl)benzene (2-85) (112 mg, 0.768 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 12 hours. Compound 2-

91h (45 mg, 0.102 mmol, 27%) was obtained as a clear oil. Rf = 0.52 (30% EtOAc in 

hexanes). 

Following experimental procedure B Method B, compound 2-91h was prepared by 

dissolving bis(2,2,2-trifluoroethyl) 2-vinylcyclopropane-1,1-dicarboxylate (2-90h) (128 

mg, 0.400 mmol) and Dy(OTf)3 (24 mg, 0.040 mmol) in 6 mL of toluene. 3-phenyl-2H-

azirine (2-81) (93.6 mg, 0.833 mmol), in 1 mL of toluene, was then added dropwise. The 

reaction was heated at 110 oC for 15 hours.  Compound 2-91h (44 mg, 25%) was 

obtained as a clear oil.  

N
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1H NMR (400 MHz, CDCl3) δ = 7.56 - 7.52 (m, 2H), 7.32 - 7. 25 (m, 3H), 6.00 - 5.91 

(m, 1H), 5.36 (dt, J = 17.2, 1.4 Hz, 1H), 5.26 (dt, J = 10.6, 1.4 Hz, 1H), 4.65 (dq, J = 

12.5, 8.3 Hz, 2H), 4.50 (dq, J = 12.5, 8.2 Hz, 1H), 4.33 (dq, J = 2.5, 8.3 Hz, 1H), 3.74 

(dq, J = 12.7, 8.3 Hz, 1H), 2.67 (dd, J = 14.5, 7.0 Hz, 1H), 2.13 (s, 1H),  2.01 (s, 1H), 

1.96 (dd, J = 14.1, 10.9 Hz, 1H). 19F NMR (376 MHz, CDCl3) δ = -73.77 (t, J = 8.6 Hz, 

3F), -73.99 (t, J = 8.6 Hz, 3F). 3C NMR (100 MHz, CDCl3) δ = 168.0, 167.9, 136.7, 

135.3, 128.6, 128.0, 122.5 (q, JC-F = 277 Hz, 1C), 122.1 (q, JC-F = 277 Hz, 1C), 117.3, 

65.9, 64.6, 61.2 (q, JC-F = 36 Hz, 1C), 61.1 (q, JC-F = 37 Hz, 1C), 54.5, 36.9, 32.2. FT-IR 

(thin film, cm-1): 3063, 2976, 1754, 1496, 1448, 1413, 1286, 1233, 1170, 1103, 977, 701. 

HRMS calc’d for C19H17F6NO4 [M+]: 437.1062; found: 437.0990. 

Bis(2,2,2-trifluoroethyl) 2-methyl-2,5-diphenyl-1-azabicyclo[3.1.0] 

hexane-4,4-dicarboxylate (2-91i). 

Following experimental procedure B Method A, compound 2-91i was 

prepared by dissolving cyclopropane 2-90i (150 mg, 0.390 mmol) and Dy(OTf)3 (24 mg, 

0.039 mmol) in 6 mL of toluene. (1-azidovinyl)benzene (2-85) (113 mg, 0.781 mmol), in 

1 mL of toluene, was then added dropwise. The reaction was heated at 110 oC for 12 

hours. Compound 2-91i (160 mg,0.319 mmol, 82%) was obtained as a yellow semi-solid 

in a 1:1 mixture of diastereomers. Rf = 0.80 (30% EtOAc in hexanes).  

Following experimental procedure B Method B, compound 2-91i was prepared by 

dissolving cyclopropane 2-90i (150 mg, 0.390 mmol) and Dy(OTf)3 (24 mg, 0.039 mmol) 

in 6 mL of toluene. 3-phenyl-2H-azirine (2-81) (91 mg, 0.781 mmol), in 1 mL of toluene, 

was then added dropwise. The reaction was heated at 110 oC for 18 hours.  Compound 8j 

(169 mg,0.337 mmol, 87%) was obtained as a yellow semi-solid in a 1:1 mixture of 

diastereomers. 

1H NMR (400 MHz, CDCl3) (mixture of diastereomers) δ = 7.83 (d, J = 8.6 Hz, 2H), 

7.62 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 7.46 (m, 2H), 7.43 - 7.36 (m, 5 H), 

7.35- 7.23 (m, 7H), 4.76 - 4.63 (m, 1H), 4.62 - 4.41 (m, 4H), 3.94 (dq, J = 16.4, 8.2 Hz, 

1H), 3.68 (dq, J = 12.6, 8.3 Hz, 1H), 3.46 (dq, J = 12.5, 8.4 Hz, 1H), 3.31 (d, J = 14.8 Hz, 

1H), 3.25 (d, J = 14.5 Hz, 1H), 2.64 (d, J = 14.5 Hz, 1H), 2.59 (d, J = 14.5 Hz, 1 H), 2.41 
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(s, 1H),  2.26 (s, 1H),  2.13 (s, 1H), 1.90 (s, 3H), 1.87 (s, 1H), 1.57 (s, 3H). 19F NMR 

(376 MHz, CDCl3) (mixture of diastereomers) δ = -73.64 (t, J=8.6 Hz, 3F), -73.71 (t, 

J=8.6 Hz, 3F), -73.99 - -73.89 (m, 6F). 13C NMR (100 MHz, CDCl3) (mixture of 

diastereomers) δ = 168.6, 168.3, 168.1, 166.9, 147.8, 147.0, 138.1, 137.3, 128.9, 128.4, 

128.2, 128.1, 128.0, 127.9, 127.4, 126.6, 125.8, 125.6, 122.5 (d, JC-F = 277 Hz, 2C), 

122.1 (q, JC-F = 277 Hz, 1C), 122.0 (q, JC-F = 277 Hz, 1C), 70.9, 69.5, 66.8, 65.3, 61.3 (q, 

JC-F = 37 Hz, 2C), 61.2 (q, JC-F = 37 Hz, 2C), 57.2, 55.5, 45.2, 44.4, 36.1, 34.5,  33.4, 

29.8. FT-IR (thin film, cm-1): 3061, 3028, 2974, 1757, 1603, 1495, 1447, 1285, 1231, 

1170, 1102, 975, 701. HRMS calc’d for C24H21F6N2O4 [M+]: 501.1375; found: 501.1306. 

 Bis(2,2,2-trifluoroethyl)2-(but-1-ynyl)-2-methyl-5-phenyl-1-

azabicyclo[3.1.0] hexane-4,4-dicarboxylate (2-91j).  

Following experimental procedure B Method A, compound 2-91j 

was prepared by dissolving cyclopropane 2-90j (150 mg, 0.417 

mmol) and  Dy(OTf)3 (25 mg, 0.042 mmol) in 6 mL of toluene. (1-azidovinyl)benzene 

(2-85) (121 mg, 0.833 mmol), in 1 mL of toluene, was  then added dropwise. The 

reaction was heated at 110 oC for 18 hours.  Compound 2-91j (103 mg, 52%) was 

obtained as a clear oil. Rf = 0.44 (30% EtOAc in hexanes).  

Following experimental procedure B Method B, compound 2-91j was prepared by 

dissolving cyclopropane 2-90j (150 mg, 0.417 mmol) and Dy(OTf)3 (25 mg, 0.042 

mmol) in 6 mL of toluene. 3-phenyl-2H-azirine (2-81) (97 mg, 0.833 mmol), in 1 mL of 

toluene, was then added dropwise. The reaction was heated at 110 oC for 20 hours.  

Compound 2-91j (105 mg, 53%) was obtained as a clear oil. 

1H NMR (400 MHz, CDCl3) δ = 7.54 - 7.50 (m, 2H), 7.31 - 7.22 (m, 3H), 4.62 (dq, J = 

16.4, 8.2 Hz, 1H), 4.50 (qd, J = 16.4, 8.2 Hz, 1H), 4.38 (qd, J = 12.5, 8.6 Hz, 1H),  3.85 

(qd, J = 12.5, 8.4 Hz, 1H), 2.98 (d, J = 14.4 Hz, 1H),  2.31 (d, J = 14.4 Hz, 1H), 2.25 (q, J 

= 7.7 Hz, 2H), 2.05 (d, J = 1.6 Hz, 1H), 1.92 (d, J = 1.2 Hz, 1H), 1.55 (s, 3H) 1.18 (t, J = 

7.4 Hz, 3H). 19F NMR (376 MHz, CDCl3) δ = -73.74 (t, J = 8.6 Hz, 3F), -73.94 (t, J = 

8.6 Hz, 3F). 13C NMR (100 MHz, CDCl3) δ = 168.1, 166.4, 137.4, 128.9, 127.6, 122.4 
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(q, JC-F = 277 Hz, 1C), 122.2 (q, JC-F = 277 Hz, 1C), 85.2, 82.6, 65.8, 61.3 (q, JC-F = 37 

Hz, 1C), 61.2, 61.0 (q, JC-F = 37 Hz, 1C), 55.7, 45.3, 32.9, 25.8, 13.6, 12.3. FT-IR (thin 

film, cm-1): 3062, 3030, 2978, 2939, 2881, 2248, 1759, 1497, 1448, 1411, 1285, 1229, 

1170, 1129, 974, 701. HRMS calc’d for C22H21F6NO4 [M+]: 477.1375; found: 477.1303.  

 

X-Ray Crystallography Data of 8b (CDCD 1486123) 

X-ray quality crystals were prepared by vapor diffusion of cyclohexane into a solution of 

2-91a in minimal dichloromethane. All x-ray measurements were made on a Bruker 

Kappa Axis Apex2 diffractometer at a temperature of 110 K. 

 

 
Table S1.  Summary of Crystal Data for 2-91a 
 

Formula C23H19F6NO4 

Formula Weight (g/mol) 487.39 

Crystal Dimensions (mm ) 0.429 × 0.326 × 0.270 

Crystal Color and Habit colourless prism 

Crystal System triclinic 
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Space Group P -1 

Temperature, K 110 

a, Å 8.5114(17) 

b, Å  9.495(2) 

c, Å  13.368(4) 

α,° 98.002(14) 

β,° 95.439(9) 

γ,° 96.685(9) 

V, Å3 1055.7(5) 

Number of reflections to determine final unit cell 9127 

Min and Max 2θ for cell determination, ° 4.84, 88.34 

Z 2 

F(000) 500 

ρ (g/cm) 1.533 

λ, Å, (MoKα) 0.71073 

µ, (cm-1) 0.139 

Diffractometer Type Bruker Kappa 
Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2θ for data collection, ° 89.118 

Measured fraction of data 0.998 

Number of reflections measured 85998 

Unique reflections measured 15039 

Rmerge 0.0268 

Number of reflections included in refinement 15039 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix 
least-squares 
using F2 

Weighting Scheme w=1/[sigma2(F
o2)+(0.0645P)2

+0.1378P] 
where 
P=(Fo2+2Fc2)/
3 

Number of parameters in least-squares 383 

R1 0.0398 

wR2 0.1118 

R1 (all data) 0.0531 

wR2 (all data) 0.1202 
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GOF 1.035 

Maximum shift/error 0.001 

Min & Max peak heights on final ∆F Map (e-/Å) -0.468, 0.629 

X-Ray Crystallography Data of 2-91f (CDCD 1486124) 

X-ray quality crystals were prepared by vapor diffusion of cyclohexane into a solution of 

2-91f in minimal dichloromethane. All x-ray measurements were made on a Bruker 

Kappa Axis Apex2 diffractometer at a temperature of 110 K. 

 
 

 

 

Table 1.  Summary of Crystal Data for n16035  
 

Formula C25H18F6N2O6 

Formula Weight (g/mol) 556.41 

Crystal Dimensions (mm ) 0.218 × 0.140 × 0.102 

Crystal Color and Habit colourless prism 

Crystal System triclinic 
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Space Group P -1 

Temperature, K 110 

a, Å 9.2060(18) 

b, Å  11.1007(16) 

c, Å  13.748(2) 

α,° 70.276(7) 

β,° 77.582(7) 

γ,° 67.549(8) 

V, Å3 1216.3(4) 

Number of reflections to determine final unit cell 6519 

Min and Max 2θ for cell determination, ° 8.98, 133.14 

Z 2 

F(000) 568 

ρ (g/cm) 1.519 

λ, Å, (CuKα) 1.54178 

µ, (cm-1) 1.220 

Diffractometer Type Bruker-Nonius 
KappCCD Apex2 

Scan Type(s) phi and omega scans 

Max 2θ for data collection, ° 133.132 

Measured fraction of data 0.962 

Number of reflections measured 15243 

Unique reflections measured 4132 

Rmerge 0.0310 

Number of reflections included in refinement 4132 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using 
F2 

Weighting Scheme w=1/[sigma2(Fo2)+ 
(0.0576P)2+0.4707P] where 
 
P=(Fo2+2Fc2)/
3 

Number of parameters in least-squares 424 

R1 0.0384 

wR2 0.1009 

R1 (all data) 0.0445 

wR2 (all data) 0.1062 

GOF 1.050 
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Maximum shift/error 0.000 

Min & Max peak heights on final ∆F Map (e-/Å) -0.432, 0.572 

 

Where: 
R1 = Σ( |Fo| - |Fc| ) / Σ Fo 
wR2 = [ Σ( w( Fo

2 - Fc
2 )2 ) / Σ(w Fo

4 ) ]½ 
GOF = [ Σ( w( Fo

2 - Fc
2 )2 ) / (No. of reflns. - No. of params. ) ]½ 
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3 Conclusions 

The two chapters discussed in this thesis are related to each other as they both explored 

the synthetic utility of donor acceptor (DA) cyclopropanes for the synthesis of N-

containing heterocycles. Furthermore, a common theme which ties the two chapters 

together are the synthetic challenges associated with the development of new synthetic 

methodologies and their application towards the synthesis of pharmaceuticals or natural 

products. Often, these types of projects give students the opportunity to gain valuable 

troubleshooting ability, improve oral and written communication skills, effective time 

management and organization skills, as well as test their ability to perform efficiently and 

multi-task in a fast-paced environment.  

In chapter one, we studied the ability of quaternary DA cyclopropanes to undergo a 

nucleophilic ring opening reaction to afford Homo-Michael addition products. The new 

synthetic protocol described in this chapter was utilized in the synthesis of pyrroloindoles 

bearing a quaternary centre (Scheme 3-1). The reaction involves a Lewis acid catalyzed 

nucleophilic ring opening of quaternary DA cyclopropanes 3-2 with indoline 3-1 to yield 

N-alkylated indolines 3-3 in yields ranging from 44-88%. The resulting ring opened 

products were then subjected to a Mn(OAc)3 mediated radical oxidative cyclization to 

afford the corresponding pyrroloindoles (3-4) with varying substitution in yields ranging 

from 40-83%, this making them attractive synthetic intermediates in the synthesis of 

natural products and pharmaceuticals. 

 

Scheme 3-1. Synthesis of pyrroloindoles via a Lewis acid catalyzed nucleophilic ring 

opening and oxidative radical cyclization of quaternary DA cyclopropanes. 
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Also in chapter one, the aforementioned methodology was then applied toward the total 

synthesis of the natural products flinderoles A, B, and C. Although we were not able to 

synthesize the natural products, we were able to obtain optimized reaction conditions for 

the synthesis of the bis-indole moiety 3-9 (Scheme 3-2) of the natural products, which 

could be a synthetic method for the synthesis of flinderole analogues for drug 

development. Furthermore, the project highlights all the struggles and 

troubleshooting/problem solving associated in natural product synthesis, as shown in our 

many attempts and revisions to complete the total synthesis of the flinderoles. 

 

Scheme 3-2. Synthesis of bis-indole moiety of the flinderoles. 

The second chapter of this thesis described the reactivity of DA cyclopropane 3-12 

towards the Lewis acid catalyzed annulation reaction with vinyl azide 3-13 or 2H-azirine 

3-15 to give 1-azabicyclo[3.1.0]hexane-4,4-dicarboxylates 3-14 (Scheme 3-3). During the 

reaction optimization, it was found that the replacement of the commonly used dimethyl 
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esters on the DA cyclopropane with the more electrophilic bis-trifluoroethyl esters 

diminished the formation of side products and gave the desired azabicycle. The reaction 

of DA cyclopropane 3-12 and 2H-azirine 3-15 had higher yields (25-92% vs 27-82%), 

but slower reaction times. Mechanistically, we have postulated that the observed 1-

azabicyclo[3.1.0]hexane-4,4-dicarboxylates are being formed via a vinyl nitrene 

intermediate, which forms upon heating the vinyl azide or 2H-azirine.  Further studies are 

required to gain more insight into the mechanism of the reaction. 

 

Scheme 3-3. Lewis acid catalyzed annulation reaction of DA cyclopropane 3-12 with 

vinyl azide 3-13 or 2H-azirine 315 for the synthesis of azabicycles 3-14. 

The envisioned future work for this project will focus on exploring the reactivity of the 

azabicycles for the conversion to useful heterocyclic motifs.  

 

Scheme 3-4. Envisioned transformations azabicycle (x) into useful heterocyclic motifs. 

        …………………………………………
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Appendix I- Synthesis of Pyrroloindoles from Donor Acceptor 

Cyclopropanes and their application towards the Total 

Synthesis of Flinderoles A, B, and C- 1H NMR and 13C NMR 



www.manaraa.com

 

114 

 

 



www.manaraa.com

 

115 

 

 

 



www.manaraa.com

 

116 

 

Me

MeO2C
CO2Me

1H NMR of 1-52b



www.manaraa.com

 

117 

 

 

  

Me

MeO2C
CO2Me

13C NMR of 1-52b



www.manaraa.com

 

118 

 

 



www.manaraa.com

 

119 

 

 



www.manaraa.com

 

120 

 



www.manaraa.com

 

121 

 



www.manaraa.com

 

122 

 



www.manaraa.com

 

123 

 

N

CO2Me

MeO2C

Me

13C NMR of 1-53b



www.manaraa.com

 

124 

 



www.manaraa.com

 

125 

 

 

N

CO2Me

MeO2C

Me

13C NMR of 1-53c



www.manaraa.com

 

126 

 



www.manaraa.com

 

127 

 

 



www.manaraa.com

 

128 

 



www.manaraa.com

 

129 

 

N

CO2Me

MeO2C

Me

13C NMR of 1-53e



www.manaraa.com

 

130 

 



www.manaraa.com

 

131 

 



www.manaraa.com

 

132 

 



www.manaraa.com

 

133 

 



www.manaraa.com

 

134 

 



www.manaraa.com

 

135 

 



www.manaraa.com

 

136 

 



www.manaraa.com

 

137 

 



www.manaraa.com

 

138 

 



www.manaraa.com

 

139 

 



www.manaraa.com

 

140 

 



www.manaraa.com

 

141 

 



www.manaraa.com

 

142 

 



www.manaraa.com

 

143 

 



www.manaraa.com

 

144 

 



www.manaraa.com

 

145 

 

 

  



www.manaraa.com

 

146 

 

 

 



www.manaraa.com

 

147 

 

 

  



www.manaraa.com

 

148 

 



www.manaraa.com

 

149 

 



www.manaraa.com

 

150 

 



www.manaraa.com

 

151 

 



www.manaraa.com

 

152 

 



www.manaraa.com

 

153 

 



www.manaraa.com

 

154 

 

 

N

Ph Me

O

H

1H NMR of 1-93



www.manaraa.com

 

155 

 



www.manaraa.com

 

156 

 



www.manaraa.com

 

157 

 



www.manaraa.com

 

158 

 



www.manaraa.com

 

159 

 



www.manaraa.com

 

160 

 

 

 



www.manaraa.com

 

161 

 

Appendix II- Annulation Reactions of Donor Acceptor 
Cyclopropanes with vinyl azide and 2H-azirine - 1H 

NMR, 13C NMR, and 19F NMR 
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